Metamath Proof Explorer


Theorem isposixOLD

Description: Obsolete proof of isposix as of 30-Oct-2024. Properties that determine a poset (explicit structure version). Note that the numeric indices of the structure components are not mentioned explicitly in either the theorem or its proof (Remark: That is not true - it becomes true with the new proof!). (Contributed by NM, 9-Nov-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses isposix.a
|- B e. _V
isposix.b
|- .<_ e. _V
isposix.k
|- K = { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , .<_ >. }
isposix.1
|- ( x e. B -> x .<_ x )
isposix.2
|- ( ( x e. B /\ y e. B ) -> ( ( x .<_ y /\ y .<_ x ) -> x = y ) )
isposix.3
|- ( ( x e. B /\ y e. B /\ z e. B ) -> ( ( x .<_ y /\ y .<_ z ) -> x .<_ z ) )
Assertion isposixOLD
|- K e. Poset

Proof

Step Hyp Ref Expression
1 isposix.a
 |-  B e. _V
2 isposix.b
 |-  .<_ e. _V
3 isposix.k
 |-  K = { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , .<_ >. }
4 isposix.1
 |-  ( x e. B -> x .<_ x )
5 isposix.2
 |-  ( ( x e. B /\ y e. B ) -> ( ( x .<_ y /\ y .<_ x ) -> x = y ) )
6 isposix.3
 |-  ( ( x e. B /\ y e. B /\ z e. B ) -> ( ( x .<_ y /\ y .<_ z ) -> x .<_ z ) )
7 prex
 |-  { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , .<_ >. } e. _V
8 3 7 eqeltri
 |-  K e. _V
9 df-ple
 |-  le = Slot ; 1 0
10 1lt10
 |-  1 < ; 1 0
11 10nn
 |-  ; 1 0 e. NN
12 3 9 10 11 2strbas
 |-  ( B e. _V -> B = ( Base ` K ) )
13 1 12 ax-mp
 |-  B = ( Base ` K )
14 3 9 10 11 2strop
 |-  ( .<_ e. _V -> .<_ = ( le ` K ) )
15 2 14 ax-mp
 |-  .<_ = ( le ` K )
16 8 13 15 4 5 6 isposi
 |-  K e. Poset