Description: Obsolete proof of isposix as of 30-Oct-2024. Properties that determine a poset (explicit structure version). Note that the numeric indices of the structure components are not mentioned explicitly in either the theorem or its proof (Remark: That is not true - it becomes true with the new proof!). (Contributed by NM, 9-Nov-2012) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isposix.a | ⊢ 𝐵 ∈ V | |
isposix.b | ⊢ ≤ ∈ V | ||
isposix.k | ⊢ 𝐾 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 } | ||
isposix.1 | ⊢ ( 𝑥 ∈ 𝐵 → 𝑥 ≤ 𝑥 ) | ||
isposix.2 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) → 𝑥 = 𝑦 ) ) | ||
isposix.3 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) | ||
Assertion | isposixOLD | ⊢ 𝐾 ∈ Poset |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isposix.a | ⊢ 𝐵 ∈ V | |
2 | isposix.b | ⊢ ≤ ∈ V | |
3 | isposix.k | ⊢ 𝐾 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 } | |
4 | isposix.1 | ⊢ ( 𝑥 ∈ 𝐵 → 𝑥 ≤ 𝑥 ) | |
5 | isposix.2 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) → 𝑥 = 𝑦 ) ) | |
6 | isposix.3 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) | |
7 | prex | ⊢ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 } ∈ V | |
8 | 3 7 | eqeltri | ⊢ 𝐾 ∈ V |
9 | df-ple | ⊢ le = Slot ; 1 0 | |
10 | 1lt10 | ⊢ 1 < ; 1 0 | |
11 | 10nn | ⊢ ; 1 0 ∈ ℕ | |
12 | 3 9 10 11 | 2strbas | ⊢ ( 𝐵 ∈ V → 𝐵 = ( Base ‘ 𝐾 ) ) |
13 | 1 12 | ax-mp | ⊢ 𝐵 = ( Base ‘ 𝐾 ) |
14 | 3 9 10 11 | 2strop | ⊢ ( ≤ ∈ V → ≤ = ( le ‘ 𝐾 ) ) |
15 | 2 14 | ax-mp | ⊢ ≤ = ( le ‘ 𝐾 ) |
16 | 8 13 15 4 5 6 | isposi | ⊢ 𝐾 ∈ Poset |