| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isposix.a |
⊢ 𝐵 ∈ V |
| 2 |
|
isposix.b |
⊢ ≤ ∈ V |
| 3 |
|
isposix.k |
⊢ 𝐾 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 } |
| 4 |
|
isposix.1 |
⊢ ( 𝑥 ∈ 𝐵 → 𝑥 ≤ 𝑥 ) |
| 5 |
|
isposix.2 |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 6 |
|
isposix.3 |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) |
| 7 |
|
prex |
⊢ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 } ∈ V |
| 8 |
3 7
|
eqeltri |
⊢ 𝐾 ∈ V |
| 9 |
|
basendxltplendx |
⊢ ( Base ‘ ndx ) < ( le ‘ ndx ) |
| 10 |
|
plendxnn |
⊢ ( le ‘ ndx ) ∈ ℕ |
| 11 |
3 9 10
|
2strbas1 |
⊢ ( 𝐵 ∈ V → 𝐵 = ( Base ‘ 𝐾 ) ) |
| 12 |
1 11
|
ax-mp |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 13 |
|
pleid |
⊢ le = Slot ( le ‘ ndx ) |
| 14 |
3 9 10 13
|
2strop1 |
⊢ ( ≤ ∈ V → ≤ = ( le ‘ 𝐾 ) ) |
| 15 |
2 14
|
ax-mp |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 16 |
8 12 15 4 5 6
|
isposi |
⊢ 𝐾 ∈ Poset |