Metamath Proof Explorer


Theorem isposix

Description: Properties that determine a poset (explicit structure version). Note that the numeric indices of the structure components are not mentioned explicitly in either the theorem or its proof. (Contributed by NM, 9-Nov-2012) (Proof shortened by AV, 30-Oct-2024)

Ref Expression
Hypotheses isposix.a 𝐵 ∈ V
isposix.b ∈ V
isposix.k 𝐾 = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( le ‘ ndx ) , ⟩ }
isposix.1 ( 𝑥𝐵𝑥 𝑥 )
isposix.2 ( ( 𝑥𝐵𝑦𝐵 ) → ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) )
isposix.3 ( ( 𝑥𝐵𝑦𝐵𝑧𝐵 ) → ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 ) )
Assertion isposix 𝐾 ∈ Poset

Proof

Step Hyp Ref Expression
1 isposix.a 𝐵 ∈ V
2 isposix.b ∈ V
3 isposix.k 𝐾 = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( le ‘ ndx ) , ⟩ }
4 isposix.1 ( 𝑥𝐵𝑥 𝑥 )
5 isposix.2 ( ( 𝑥𝐵𝑦𝐵 ) → ( ( 𝑥 𝑦𝑦 𝑥 ) → 𝑥 = 𝑦 ) )
6 isposix.3 ( ( 𝑥𝐵𝑦𝐵𝑧𝐵 ) → ( ( 𝑥 𝑦𝑦 𝑧 ) → 𝑥 𝑧 ) )
7 prex { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( le ‘ ndx ) , ⟩ } ∈ V
8 3 7 eqeltri 𝐾 ∈ V
9 basendxltplendx ( Base ‘ ndx ) < ( le ‘ ndx )
10 plendxnn ( le ‘ ndx ) ∈ ℕ
11 3 9 10 2strbas1 ( 𝐵 ∈ V → 𝐵 = ( Base ‘ 𝐾 ) )
12 1 11 ax-mp 𝐵 = ( Base ‘ 𝐾 )
13 pleid le = Slot ( le ‘ ndx )
14 3 9 10 13 2strop1 ( ∈ V → = ( le ‘ 𝐾 ) )
15 2 14 ax-mp = ( le ‘ 𝐾 )
16 8 12 15 4 5 6 isposi 𝐾 ∈ Poset