Description: Properties that determine a poset (explicit structure version). Note that the numeric indices of the structure components are not mentioned explicitly in either the theorem or its proof. (Contributed by NM, 9-Nov-2012) (Proof shortened by AV, 30-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isposix.a | |- B e. _V |
|
isposix.b | |- .<_ e. _V |
||
isposix.k | |- K = { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , .<_ >. } |
||
isposix.1 | |- ( x e. B -> x .<_ x ) |
||
isposix.2 | |- ( ( x e. B /\ y e. B ) -> ( ( x .<_ y /\ y .<_ x ) -> x = y ) ) |
||
isposix.3 | |- ( ( x e. B /\ y e. B /\ z e. B ) -> ( ( x .<_ y /\ y .<_ z ) -> x .<_ z ) ) |
||
Assertion | isposix | |- K e. Poset |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isposix.a | |- B e. _V |
|
2 | isposix.b | |- .<_ e. _V |
|
3 | isposix.k | |- K = { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , .<_ >. } |
|
4 | isposix.1 | |- ( x e. B -> x .<_ x ) |
|
5 | isposix.2 | |- ( ( x e. B /\ y e. B ) -> ( ( x .<_ y /\ y .<_ x ) -> x = y ) ) |
|
6 | isposix.3 | |- ( ( x e. B /\ y e. B /\ z e. B ) -> ( ( x .<_ y /\ y .<_ z ) -> x .<_ z ) ) |
|
7 | prex | |- { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , .<_ >. } e. _V |
|
8 | 3 7 | eqeltri | |- K e. _V |
9 | basendxltplendx | |- ( Base ` ndx ) < ( le ` ndx ) |
|
10 | plendxnn | |- ( le ` ndx ) e. NN |
|
11 | 3 9 10 | 2strbas1 | |- ( B e. _V -> B = ( Base ` K ) ) |
12 | 1 11 | ax-mp | |- B = ( Base ` K ) |
13 | pleid | |- le = Slot ( le ` ndx ) |
|
14 | 3 9 10 13 | 2strop1 | |- ( .<_ e. _V -> .<_ = ( le ` K ) ) |
15 | 2 14 | ax-mp | |- .<_ = ( le ` K ) |
16 | 8 12 15 4 5 6 | isposi | |- K e. Poset |