Metamath Proof Explorer


Theorem isposix

Description: Properties that determine a poset (explicit structure version). Note that the numeric indices of the structure components are not mentioned explicitly in either the theorem or its proof. (Contributed by NM, 9-Nov-2012) (Proof shortened by AV, 30-Oct-2024)

Ref Expression
Hypotheses isposix.a
|- B e. _V
isposix.b
|- .<_ e. _V
isposix.k
|- K = { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , .<_ >. }
isposix.1
|- ( x e. B -> x .<_ x )
isposix.2
|- ( ( x e. B /\ y e. B ) -> ( ( x .<_ y /\ y .<_ x ) -> x = y ) )
isposix.3
|- ( ( x e. B /\ y e. B /\ z e. B ) -> ( ( x .<_ y /\ y .<_ z ) -> x .<_ z ) )
Assertion isposix
|- K e. Poset

Proof

Step Hyp Ref Expression
1 isposix.a
 |-  B e. _V
2 isposix.b
 |-  .<_ e. _V
3 isposix.k
 |-  K = { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , .<_ >. }
4 isposix.1
 |-  ( x e. B -> x .<_ x )
5 isposix.2
 |-  ( ( x e. B /\ y e. B ) -> ( ( x .<_ y /\ y .<_ x ) -> x = y ) )
6 isposix.3
 |-  ( ( x e. B /\ y e. B /\ z e. B ) -> ( ( x .<_ y /\ y .<_ z ) -> x .<_ z ) )
7 prex
 |-  { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , .<_ >. } e. _V
8 3 7 eqeltri
 |-  K e. _V
9 basendxltplendx
 |-  ( Base ` ndx ) < ( le ` ndx )
10 plendxnn
 |-  ( le ` ndx ) e. NN
11 3 9 10 2strbas1
 |-  ( B e. _V -> B = ( Base ` K ) )
12 1 11 ax-mp
 |-  B = ( Base ` K )
13 pleid
 |-  le = Slot ( le ` ndx )
14 3 9 10 13 2strop1
 |-  ( .<_ e. _V -> .<_ = ( le ` K ) )
15 2 14 ax-mp
 |-  .<_ = ( le ` K )
16 8 12 15 4 5 6 isposi
 |-  K e. Poset