| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resipos.k |  |-  K = { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } | 
						
							| 2 |  | prex |  |-  { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } e. _V | 
						
							| 3 | 1 2 | eqeltri |  |-  K e. _V | 
						
							| 4 | 3 | a1i |  |-  ( B e. V -> K e. _V ) | 
						
							| 5 | 1 | resiposbas |  |-  ( B e. V -> B = ( Base ` K ) ) | 
						
							| 6 |  | resiexg |  |-  ( B e. V -> ( _I |` B ) e. _V ) | 
						
							| 7 |  | basendxltplendx |  |-  ( Base ` ndx ) < ( le ` ndx ) | 
						
							| 8 |  | plendxnn |  |-  ( le ` ndx ) e. NN | 
						
							| 9 |  | pleid |  |-  le = Slot ( le ` ndx ) | 
						
							| 10 | 1 7 8 9 | 2strop1 |  |-  ( ( _I |` B ) e. _V -> ( _I |` B ) = ( le ` K ) ) | 
						
							| 11 | 6 10 | syl |  |-  ( B e. V -> ( _I |` B ) = ( le ` K ) ) | 
						
							| 12 |  | equid |  |-  x = x | 
						
							| 13 |  | resieq |  |-  ( ( x e. B /\ x e. B ) -> ( x ( _I |` B ) x <-> x = x ) ) | 
						
							| 14 | 13 | anidms |  |-  ( x e. B -> ( x ( _I |` B ) x <-> x = x ) ) | 
						
							| 15 | 12 14 | mpbiri |  |-  ( x e. B -> x ( _I |` B ) x ) | 
						
							| 16 | 15 | adantl |  |-  ( ( B e. V /\ x e. B ) -> x ( _I |` B ) x ) | 
						
							| 17 |  | resieq |  |-  ( ( x e. B /\ y e. B ) -> ( x ( _I |` B ) y <-> x = y ) ) | 
						
							| 18 | 17 | biimpd |  |-  ( ( x e. B /\ y e. B ) -> ( x ( _I |` B ) y -> x = y ) ) | 
						
							| 19 | 18 | adantrd |  |-  ( ( x e. B /\ y e. B ) -> ( ( x ( _I |` B ) y /\ y ( _I |` B ) x ) -> x = y ) ) | 
						
							| 20 | 19 | 3adant1 |  |-  ( ( B e. V /\ x e. B /\ y e. B ) -> ( ( x ( _I |` B ) y /\ y ( _I |` B ) x ) -> x = y ) ) | 
						
							| 21 |  | eqtr |  |-  ( ( x = y /\ y = z ) -> x = z ) | 
						
							| 22 | 21 | a1i |  |-  ( ( B e. V /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x = y /\ y = z ) -> x = z ) ) | 
						
							| 23 |  | simpr1 |  |-  ( ( B e. V /\ ( x e. B /\ y e. B /\ z e. B ) ) -> x e. B ) | 
						
							| 24 |  | simpr2 |  |-  ( ( B e. V /\ ( x e. B /\ y e. B /\ z e. B ) ) -> y e. B ) | 
						
							| 25 | 23 24 17 | syl2anc |  |-  ( ( B e. V /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( x ( _I |` B ) y <-> x = y ) ) | 
						
							| 26 |  | simpr3 |  |-  ( ( B e. V /\ ( x e. B /\ y e. B /\ z e. B ) ) -> z e. B ) | 
						
							| 27 |  | resieq |  |-  ( ( y e. B /\ z e. B ) -> ( y ( _I |` B ) z <-> y = z ) ) | 
						
							| 28 | 24 26 27 | syl2anc |  |-  ( ( B e. V /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( y ( _I |` B ) z <-> y = z ) ) | 
						
							| 29 | 25 28 | anbi12d |  |-  ( ( B e. V /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x ( _I |` B ) y /\ y ( _I |` B ) z ) <-> ( x = y /\ y = z ) ) ) | 
						
							| 30 |  | resieq |  |-  ( ( x e. B /\ z e. B ) -> ( x ( _I |` B ) z <-> x = z ) ) | 
						
							| 31 | 23 26 30 | syl2anc |  |-  ( ( B e. V /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( x ( _I |` B ) z <-> x = z ) ) | 
						
							| 32 | 22 29 31 | 3imtr4d |  |-  ( ( B e. V /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x ( _I |` B ) y /\ y ( _I |` B ) z ) -> x ( _I |` B ) z ) ) | 
						
							| 33 | 4 5 11 16 20 32 | isposd |  |-  ( B e. V -> K e. Poset ) |