Description: Construct a poset ( resipos ) for any base set. (Contributed by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | resipos.k | |- K = { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } |
|
| Assertion | resiposbas | |- ( B e. V -> B = ( Base ` K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resipos.k | |- K = { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } |
|
| 2 | basendxltplendx | |- ( Base ` ndx ) < ( le ` ndx ) |
|
| 3 | plendxnn | |- ( le ` ndx ) e. NN |
|
| 4 | 1 2 3 | 2strbas1 | |- ( B e. V -> B = ( Base ` K ) ) |