Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
Posets and lattices using extensible structures
Posets
exbasprs
Next ⟩
basresposfo
Metamath Proof Explorer
Ascii
Unicode
Theorem
exbasprs
Description:
There exists a preordered set for any base set.
(Contributed by
Zhi Wang
, 20-Oct-2025)
Ref
Expression
Assertion
exbasprs
⊢
B
∈
V
→
∃
k
∈
Proset
B
=
Base
k
Proof
Step
Hyp
Ref
Expression
1
fveq2
⊢
k
=
Base
ndx
B
≤
ndx
I
↾
B
→
Base
k
=
Base
Base
ndx
B
≤
ndx
I
↾
B
2
1
eqeq2d
⊢
k
=
Base
ndx
B
≤
ndx
I
↾
B
→
B
=
Base
k
↔
B
=
Base
Base
ndx
B
≤
ndx
I
↾
B
3
eqid
⊢
Base
ndx
B
≤
ndx
I
↾
B
=
Base
ndx
B
≤
ndx
I
↾
B
4
3
resipos
⊢
B
∈
V
→
Base
ndx
B
≤
ndx
I
↾
B
∈
Poset
5
posprs
⊢
Base
ndx
B
≤
ndx
I
↾
B
∈
Poset
→
Base
ndx
B
≤
ndx
I
↾
B
∈
Proset
6
4
5
syl
⊢
B
∈
V
→
Base
ndx
B
≤
ndx
I
↾
B
∈
Proset
7
3
resiposbas
⊢
B
∈
V
→
B
=
Base
Base
ndx
B
≤
ndx
I
↾
B
8
2
6
7
rspcedvdw
⊢
B
∈
V
→
∃
k
∈
Proset
B
=
Base
k