Metamath Proof Explorer


Theorem exbasprs

Description: There exists a preordered set for any base set. (Contributed by Zhi Wang, 20-Oct-2025)

Ref Expression
Assertion exbasprs ( 𝐵𝑉 → ∃ 𝑘 ∈ Proset 𝐵 = ( Base ‘ 𝑘 ) )

Proof

Step Hyp Ref Expression
1 fveq2 ( 𝑘 = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( le ‘ ndx ) , ( I ↾ 𝐵 ) ⟩ } → ( Base ‘ 𝑘 ) = ( Base ‘ { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( le ‘ ndx ) , ( I ↾ 𝐵 ) ⟩ } ) )
2 1 eqeq2d ( 𝑘 = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( le ‘ ndx ) , ( I ↾ 𝐵 ) ⟩ } → ( 𝐵 = ( Base ‘ 𝑘 ) ↔ 𝐵 = ( Base ‘ { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( le ‘ ndx ) , ( I ↾ 𝐵 ) ⟩ } ) ) )
3 eqid { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( le ‘ ndx ) , ( I ↾ 𝐵 ) ⟩ } = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( le ‘ ndx ) , ( I ↾ 𝐵 ) ⟩ }
4 3 resipos ( 𝐵𝑉 → { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( le ‘ ndx ) , ( I ↾ 𝐵 ) ⟩ } ∈ Poset )
5 posprs ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( le ‘ ndx ) , ( I ↾ 𝐵 ) ⟩ } ∈ Poset → { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( le ‘ ndx ) , ( I ↾ 𝐵 ) ⟩ } ∈ Proset )
6 4 5 syl ( 𝐵𝑉 → { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( le ‘ ndx ) , ( I ↾ 𝐵 ) ⟩ } ∈ Proset )
7 3 resiposbas ( 𝐵𝑉𝐵 = ( Base ‘ { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( le ‘ ndx ) , ( I ↾ 𝐵 ) ⟩ } ) )
8 2 6 7 rspcedvdw ( 𝐵𝑉 → ∃ 𝑘 ∈ Proset 𝐵 = ( Base ‘ 𝑘 ) )