| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
|- ( k = { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } -> ( Base ` k ) = ( Base ` { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } ) ) |
| 2 |
1
|
eqeq2d |
|- ( k = { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } -> ( B = ( Base ` k ) <-> B = ( Base ` { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } ) ) ) |
| 3 |
|
eqid |
|- { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } = { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } |
| 4 |
3
|
resipos |
|- ( B e. V -> { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } e. Poset ) |
| 5 |
|
posprs |
|- ( { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } e. Poset -> { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } e. Proset ) |
| 6 |
4 5
|
syl |
|- ( B e. V -> { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } e. Proset ) |
| 7 |
3
|
resiposbas |
|- ( B e. V -> B = ( Base ` { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } ) ) |
| 8 |
2 6 7
|
rspcedvdw |
|- ( B e. V -> E. k e. Proset B = ( Base ` k ) ) |