| Step |
Hyp |
Ref |
Expression |
| 1 |
|
slotresfo.e |
⊢ 𝐸 Fn V |
| 2 |
|
slotresfo.v |
⊢ ( 𝑘 ∈ 𝐴 → ( 𝐸 ‘ 𝑘 ) ∈ 𝑉 ) |
| 3 |
|
slotresfo.k |
⊢ ( 𝑏 ∈ 𝑉 → 𝐾 ∈ 𝐴 ) |
| 4 |
|
slotresfo.b |
⊢ ( 𝑏 ∈ 𝑉 → 𝑏 = ( 𝐸 ‘ 𝐾 ) ) |
| 5 |
|
ssv |
⊢ 𝐴 ⊆ V |
| 6 |
|
fnssres |
⊢ ( ( 𝐸 Fn V ∧ 𝐴 ⊆ V ) → ( 𝐸 ↾ 𝐴 ) Fn 𝐴 ) |
| 7 |
1 5 6
|
mp2an |
⊢ ( 𝐸 ↾ 𝐴 ) Fn 𝐴 |
| 8 |
|
fvres |
⊢ ( 𝑘 ∈ 𝐴 → ( ( 𝐸 ↾ 𝐴 ) ‘ 𝑘 ) = ( 𝐸 ‘ 𝑘 ) ) |
| 9 |
8 2
|
eqeltrd |
⊢ ( 𝑘 ∈ 𝐴 → ( ( 𝐸 ↾ 𝐴 ) ‘ 𝑘 ) ∈ 𝑉 ) |
| 10 |
9
|
rgen |
⊢ ∀ 𝑘 ∈ 𝐴 ( ( 𝐸 ↾ 𝐴 ) ‘ 𝑘 ) ∈ 𝑉 |
| 11 |
|
fnfvrnss |
⊢ ( ( ( 𝐸 ↾ 𝐴 ) Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( ( 𝐸 ↾ 𝐴 ) ‘ 𝑘 ) ∈ 𝑉 ) → ran ( 𝐸 ↾ 𝐴 ) ⊆ 𝑉 ) |
| 12 |
7 10 11
|
mp2an |
⊢ ran ( 𝐸 ↾ 𝐴 ) ⊆ 𝑉 |
| 13 |
|
df-f |
⊢ ( ( 𝐸 ↾ 𝐴 ) : 𝐴 ⟶ 𝑉 ↔ ( ( 𝐸 ↾ 𝐴 ) Fn 𝐴 ∧ ran ( 𝐸 ↾ 𝐴 ) ⊆ 𝑉 ) ) |
| 14 |
7 12 13
|
mpbir2an |
⊢ ( 𝐸 ↾ 𝐴 ) : 𝐴 ⟶ 𝑉 |
| 15 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( 𝐸 ‘ 𝑘 ) = ( 𝐸 ‘ 𝐾 ) ) |
| 16 |
15
|
eqeq2d |
⊢ ( 𝑘 = 𝐾 → ( 𝑏 = ( 𝐸 ‘ 𝑘 ) ↔ 𝑏 = ( 𝐸 ‘ 𝐾 ) ) ) |
| 17 |
16 3 4
|
rspcedvdw |
⊢ ( 𝑏 ∈ 𝑉 → ∃ 𝑘 ∈ 𝐴 𝑏 = ( 𝐸 ‘ 𝑘 ) ) |
| 18 |
8
|
eqeq2d |
⊢ ( 𝑘 ∈ 𝐴 → ( 𝑏 = ( ( 𝐸 ↾ 𝐴 ) ‘ 𝑘 ) ↔ 𝑏 = ( 𝐸 ‘ 𝑘 ) ) ) |
| 19 |
18
|
rexbiia |
⊢ ( ∃ 𝑘 ∈ 𝐴 𝑏 = ( ( 𝐸 ↾ 𝐴 ) ‘ 𝑘 ) ↔ ∃ 𝑘 ∈ 𝐴 𝑏 = ( 𝐸 ‘ 𝑘 ) ) |
| 20 |
17 19
|
sylibr |
⊢ ( 𝑏 ∈ 𝑉 → ∃ 𝑘 ∈ 𝐴 𝑏 = ( ( 𝐸 ↾ 𝐴 ) ‘ 𝑘 ) ) |
| 21 |
20
|
rgen |
⊢ ∀ 𝑏 ∈ 𝑉 ∃ 𝑘 ∈ 𝐴 𝑏 = ( ( 𝐸 ↾ 𝐴 ) ‘ 𝑘 ) |
| 22 |
|
dffo3 |
⊢ ( ( 𝐸 ↾ 𝐴 ) : 𝐴 –onto→ 𝑉 ↔ ( ( 𝐸 ↾ 𝐴 ) : 𝐴 ⟶ 𝑉 ∧ ∀ 𝑏 ∈ 𝑉 ∃ 𝑘 ∈ 𝐴 𝑏 = ( ( 𝐸 ↾ 𝐴 ) ‘ 𝑘 ) ) ) |
| 23 |
14 21 22
|
mpbir2an |
⊢ ( 𝐸 ↾ 𝐴 ) : 𝐴 –onto→ 𝑉 |