| Step |
Hyp |
Ref |
Expression |
| 1 |
|
slotresfo.e |
|- E Fn _V |
| 2 |
|
slotresfo.v |
|- ( k e. A -> ( E ` k ) e. V ) |
| 3 |
|
slotresfo.k |
|- ( b e. V -> K e. A ) |
| 4 |
|
slotresfo.b |
|- ( b e. V -> b = ( E ` K ) ) |
| 5 |
|
ssv |
|- A C_ _V |
| 6 |
|
fnssres |
|- ( ( E Fn _V /\ A C_ _V ) -> ( E |` A ) Fn A ) |
| 7 |
1 5 6
|
mp2an |
|- ( E |` A ) Fn A |
| 8 |
|
fvres |
|- ( k e. A -> ( ( E |` A ) ` k ) = ( E ` k ) ) |
| 9 |
8 2
|
eqeltrd |
|- ( k e. A -> ( ( E |` A ) ` k ) e. V ) |
| 10 |
9
|
rgen |
|- A. k e. A ( ( E |` A ) ` k ) e. V |
| 11 |
|
fnfvrnss |
|- ( ( ( E |` A ) Fn A /\ A. k e. A ( ( E |` A ) ` k ) e. V ) -> ran ( E |` A ) C_ V ) |
| 12 |
7 10 11
|
mp2an |
|- ran ( E |` A ) C_ V |
| 13 |
|
df-f |
|- ( ( E |` A ) : A --> V <-> ( ( E |` A ) Fn A /\ ran ( E |` A ) C_ V ) ) |
| 14 |
7 12 13
|
mpbir2an |
|- ( E |` A ) : A --> V |
| 15 |
|
fveq2 |
|- ( k = K -> ( E ` k ) = ( E ` K ) ) |
| 16 |
15
|
eqeq2d |
|- ( k = K -> ( b = ( E ` k ) <-> b = ( E ` K ) ) ) |
| 17 |
16 3 4
|
rspcedvdw |
|- ( b e. V -> E. k e. A b = ( E ` k ) ) |
| 18 |
8
|
eqeq2d |
|- ( k e. A -> ( b = ( ( E |` A ) ` k ) <-> b = ( E ` k ) ) ) |
| 19 |
18
|
rexbiia |
|- ( E. k e. A b = ( ( E |` A ) ` k ) <-> E. k e. A b = ( E ` k ) ) |
| 20 |
17 19
|
sylibr |
|- ( b e. V -> E. k e. A b = ( ( E |` A ) ` k ) ) |
| 21 |
20
|
rgen |
|- A. b e. V E. k e. A b = ( ( E |` A ) ` k ) |
| 22 |
|
dffo3 |
|- ( ( E |` A ) : A -onto-> V <-> ( ( E |` A ) : A --> V /\ A. b e. V E. k e. A b = ( ( E |` A ) ` k ) ) ) |
| 23 |
14 21 22
|
mpbir2an |
|- ( E |` A ) : A -onto-> V |