Metamath Proof Explorer


Theorem basresprsfo

Description: The base function restricted to the class of preordered sets maps the class of preordered sets onto the universal class. (Contributed by Zhi Wang, 20-Oct-2025)

Ref Expression
Assertion basresprsfo Base Proset : Proset onto V

Proof

Step Hyp Ref Expression
1 basfn Base Fn V
2 fvexd k Proset Base k V
3 eqid Base ndx b ndx I b = Base ndx b ndx I b
4 3 resipos b V Base ndx b ndx I b Poset
5 posprs Base ndx b ndx I b Poset Base ndx b ndx I b Proset
6 4 5 syl b V Base ndx b ndx I b Proset
7 3 resiposbas b V b = Base Base ndx b ndx I b
8 1 2 6 7 slotresfo Base Proset : Proset onto V