Metamath Proof Explorer


Theorem prssspr

Description: An element of a subset of the set of all unordered pairs over a given set V , is a pair of elements of the set V . (Contributed by AV, 22-Nov-2021)

Ref Expression
Assertion prssspr
|- ( ( P C_ ( Pairs ` V ) /\ X e. P ) -> E. a e. V E. b e. V X = { a , b } )

Proof

Step Hyp Ref Expression
1 ssel2
 |-  ( ( P C_ ( Pairs ` V ) /\ X e. P ) -> X e. ( Pairs ` V ) )
2 sprel
 |-  ( X e. ( Pairs ` V ) -> E. a e. V E. b e. V X = { a , b } )
3 1 2 syl
 |-  ( ( P C_ ( Pairs ` V ) /\ X e. P ) -> E. a e. V E. b e. V X = { a , b } )