Metamath Proof Explorer


Theorem prssspr

Description: An element of a subset of the set of all unordered pairs over a given set V , is a pair of elements of the set V . (Contributed by AV, 22-Nov-2021)

Ref Expression
Assertion prssspr ( ( 𝑃 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑋𝑃 ) → ∃ 𝑎𝑉𝑏𝑉 𝑋 = { 𝑎 , 𝑏 } )

Proof

Step Hyp Ref Expression
1 ssel2 ( ( 𝑃 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑋𝑃 ) → 𝑋 ∈ ( Pairs ‘ 𝑉 ) )
2 sprel ( 𝑋 ∈ ( Pairs ‘ 𝑉 ) → ∃ 𝑎𝑉𝑏𝑉 𝑋 = { 𝑎 , 𝑏 } )
3 1 2 syl ( ( 𝑃 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑋𝑃 ) → ∃ 𝑎𝑉𝑏𝑉 𝑋 = { 𝑎 , 𝑏 } )