Metamath Proof Explorer


Theorem prelspr

Description: An unordered pair of elements of a fixed set V belongs to the set of all unordered pairs over the set V . (Contributed by AV, 21-Nov-2021)

Ref Expression
Assertion prelspr ( ( 𝑉𝑊 ∧ ( 𝑋𝑉𝑌𝑉 ) ) → { 𝑋 , 𝑌 } ∈ ( Pairs ‘ 𝑉 ) )

Proof

Step Hyp Ref Expression
1 prelpwi ( ( 𝑋𝑉𝑌𝑉 ) → { 𝑋 , 𝑌 } ∈ 𝒫 𝑉 )
2 eqidd ( ( 𝑋𝑉𝑌𝑉 ) → { 𝑋 , 𝑌 } = { 𝑋 , 𝑌 } )
3 preq1 ( 𝑎 = 𝑋 → { 𝑎 , 𝑏 } = { 𝑋 , 𝑏 } )
4 3 eqeq2d ( 𝑎 = 𝑋 → ( { 𝑋 , 𝑌 } = { 𝑎 , 𝑏 } ↔ { 𝑋 , 𝑌 } = { 𝑋 , 𝑏 } ) )
5 preq2 ( 𝑏 = 𝑌 → { 𝑋 , 𝑏 } = { 𝑋 , 𝑌 } )
6 5 eqeq2d ( 𝑏 = 𝑌 → ( { 𝑋 , 𝑌 } = { 𝑋 , 𝑏 } ↔ { 𝑋 , 𝑌 } = { 𝑋 , 𝑌 } ) )
7 4 6 rspc2ev ( ( 𝑋𝑉𝑌𝑉 ∧ { 𝑋 , 𝑌 } = { 𝑋 , 𝑌 } ) → ∃ 𝑎𝑉𝑏𝑉 { 𝑋 , 𝑌 } = { 𝑎 , 𝑏 } )
8 2 7 mpd3an3 ( ( 𝑋𝑉𝑌𝑉 ) → ∃ 𝑎𝑉𝑏𝑉 { 𝑋 , 𝑌 } = { 𝑎 , 𝑏 } )
9 1 8 jca ( ( 𝑋𝑉𝑌𝑉 ) → ( { 𝑋 , 𝑌 } ∈ 𝒫 𝑉 ∧ ∃ 𝑎𝑉𝑏𝑉 { 𝑋 , 𝑌 } = { 𝑎 , 𝑏 } ) )
10 9 adantl ( ( 𝑉𝑊 ∧ ( 𝑋𝑉𝑌𝑉 ) ) → ( { 𝑋 , 𝑌 } ∈ 𝒫 𝑉 ∧ ∃ 𝑎𝑉𝑏𝑉 { 𝑋 , 𝑌 } = { 𝑎 , 𝑏 } ) )
11 eqeq1 ( 𝑝 = { 𝑋 , 𝑌 } → ( 𝑝 = { 𝑎 , 𝑏 } ↔ { 𝑋 , 𝑌 } = { 𝑎 , 𝑏 } ) )
12 11 2rexbidv ( 𝑝 = { 𝑋 , 𝑌 } → ( ∃ 𝑎𝑉𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } ↔ ∃ 𝑎𝑉𝑏𝑉 { 𝑋 , 𝑌 } = { 𝑎 , 𝑏 } ) )
13 12 elrab ( { 𝑋 , 𝑌 } ∈ { 𝑝 ∈ 𝒫 𝑉 ∣ ∃ 𝑎𝑉𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } } ↔ ( { 𝑋 , 𝑌 } ∈ 𝒫 𝑉 ∧ ∃ 𝑎𝑉𝑏𝑉 { 𝑋 , 𝑌 } = { 𝑎 , 𝑏 } ) )
14 10 13 sylibr ( ( 𝑉𝑊 ∧ ( 𝑋𝑉𝑌𝑉 ) ) → { 𝑋 , 𝑌 } ∈ { 𝑝 ∈ 𝒫 𝑉 ∣ ∃ 𝑎𝑉𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } } )
15 sprvalpw ( 𝑉𝑊 → ( Pairs ‘ 𝑉 ) = { 𝑝 ∈ 𝒫 𝑉 ∣ ∃ 𝑎𝑉𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } } )
16 15 adantr ( ( 𝑉𝑊 ∧ ( 𝑋𝑉𝑌𝑉 ) ) → ( Pairs ‘ 𝑉 ) = { 𝑝 ∈ 𝒫 𝑉 ∣ ∃ 𝑎𝑉𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } } )
17 14 16 eleqtrrd ( ( 𝑉𝑊 ∧ ( 𝑋𝑉𝑌𝑉 ) ) → { 𝑋 , 𝑌 } ∈ ( Pairs ‘ 𝑉 ) )