Metamath Proof Explorer


Theorem prsssprel

Description: The elements of a pair from a subset of the set of all unordered pairs over a given set V are elements of the set V . (Contributed by AV, 21-Nov-2021)

Ref Expression
Assertion prsssprel
|- ( ( P C_ ( Pairs ` V ) /\ { X , Y } e. P /\ ( X e. U /\ Y e. W ) ) -> ( X e. V /\ Y e. V ) )

Proof

Step Hyp Ref Expression
1 ssel2
 |-  ( ( P C_ ( Pairs ` V ) /\ { X , Y } e. P ) -> { X , Y } e. ( Pairs ` V ) )
2 prsprel
 |-  ( ( { X , Y } e. ( Pairs ` V ) /\ ( X e. U /\ Y e. W ) ) -> ( X e. V /\ Y e. V ) )
3 1 2 stoic3
 |-  ( ( P C_ ( Pairs ` V ) /\ { X , Y } e. P /\ ( X e. U /\ Y e. W ) ) -> ( X e. V /\ Y e. V ) )