Metamath Proof Explorer


Theorem prstr

Description: "Less than or equal to" is transitive in a proset. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Hypotheses isprs.b
|- B = ( Base ` K )
isprs.l
|- .<_ = ( le ` K )
Assertion prstr
|- ( ( K e. Proset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X .<_ Y /\ Y .<_ Z ) ) -> X .<_ Z )

Proof

Step Hyp Ref Expression
1 isprs.b
 |-  B = ( Base ` K )
2 isprs.l
 |-  .<_ = ( le ` K )
3 1 2 prslem
 |-  ( ( K e. Proset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .<_ X /\ ( ( X .<_ Y /\ Y .<_ Z ) -> X .<_ Z ) ) )
4 3 simprd
 |-  ( ( K e. Proset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .<_ Y /\ Y .<_ Z ) -> X .<_ Z ) )
5 4 3impia
 |-  ( ( K e. Proset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X .<_ Y /\ Y .<_ Z ) ) -> X .<_ Z )