Description: "Less than or equal to" is transitive in a proset. (Contributed by Stefan O'Rear, 1-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isprs.b | |- B = ( Base ` K ) |
|
isprs.l | |- .<_ = ( le ` K ) |
||
Assertion | prstr | |- ( ( K e. Proset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X .<_ Y /\ Y .<_ Z ) ) -> X .<_ Z ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isprs.b | |- B = ( Base ` K ) |
|
2 | isprs.l | |- .<_ = ( le ` K ) |
|
3 | 1 2 | prslem | |- ( ( K e. Proset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .<_ X /\ ( ( X .<_ Y /\ Y .<_ Z ) -> X .<_ Z ) ) ) |
4 | 3 | simprd | |- ( ( K e. Proset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .<_ Y /\ Y .<_ Z ) -> X .<_ Z ) ) |
5 | 4 | 3impia | |- ( ( K e. Proset /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X .<_ Y /\ Y .<_ Z ) ) -> X .<_ Z ) |