| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psrbaspropd.e |
|- ( ph -> ( Base ` R ) = ( Base ` S ) ) |
| 2 |
|
eqid |
|- ( I mPwSer R ) = ( I mPwSer R ) |
| 3 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 4 |
|
eqid |
|- { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } = { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |
| 5 |
|
eqid |
|- ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) |
| 6 |
|
simpr |
|- ( ( ph /\ I e. _V ) -> I e. _V ) |
| 7 |
2 3 4 5 6
|
psrbas |
|- ( ( ph /\ I e. _V ) -> ( Base ` ( I mPwSer R ) ) = ( ( Base ` R ) ^m { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } ) ) |
| 8 |
|
eqid |
|- ( I mPwSer S ) = ( I mPwSer S ) |
| 9 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 10 |
|
eqid |
|- ( Base ` ( I mPwSer S ) ) = ( Base ` ( I mPwSer S ) ) |
| 11 |
8 9 4 10 6
|
psrbas |
|- ( ( ph /\ I e. _V ) -> ( Base ` ( I mPwSer S ) ) = ( ( Base ` S ) ^m { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } ) ) |
| 12 |
1
|
adantr |
|- ( ( ph /\ I e. _V ) -> ( Base ` R ) = ( Base ` S ) ) |
| 13 |
12
|
oveq1d |
|- ( ( ph /\ I e. _V ) -> ( ( Base ` R ) ^m { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } ) = ( ( Base ` S ) ^m { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } ) ) |
| 14 |
11 13
|
eqtr4d |
|- ( ( ph /\ I e. _V ) -> ( Base ` ( I mPwSer S ) ) = ( ( Base ` R ) ^m { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } ) ) |
| 15 |
7 14
|
eqtr4d |
|- ( ( ph /\ I e. _V ) -> ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer S ) ) ) |
| 16 |
|
reldmpsr |
|- Rel dom mPwSer |
| 17 |
16
|
ovprc1 |
|- ( -. I e. _V -> ( I mPwSer R ) = (/) ) |
| 18 |
16
|
ovprc1 |
|- ( -. I e. _V -> ( I mPwSer S ) = (/) ) |
| 19 |
17 18
|
eqtr4d |
|- ( -. I e. _V -> ( I mPwSer R ) = ( I mPwSer S ) ) |
| 20 |
19
|
fveq2d |
|- ( -. I e. _V -> ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer S ) ) ) |
| 21 |
20
|
adantl |
|- ( ( ph /\ -. I e. _V ) -> ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer S ) ) ) |
| 22 |
15 21
|
pm2.61dan |
|- ( ph -> ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer S ) ) ) |