Metamath Proof Explorer


Theorem pwfin0

Description: A finite set always belongs to a power class. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion pwfin0
|- ( ~P A i^i Fin ) =/= (/)

Proof

Step Hyp Ref Expression
1 0pwfi
 |-  (/) e. ( ~P A i^i Fin )
2 ne0i
 |-  ( (/) e. ( ~P A i^i Fin ) -> ( ~P A i^i Fin ) =/= (/) )
3 1 2 ax-mp
 |-  ( ~P A i^i Fin ) =/= (/)