| Step |
Hyp |
Ref |
Expression |
| 1 |
|
q1pcl.q |
|- Q = ( quot1p ` R ) |
| 2 |
|
q1pcl.p |
|- P = ( Poly1 ` R ) |
| 3 |
|
q1pcl.b |
|- B = ( Base ` P ) |
| 4 |
|
q1pcl.c |
|- C = ( Unic1p ` R ) |
| 5 |
|
eqid |
|- ( F Q G ) = ( F Q G ) |
| 6 |
|
eqid |
|- ( deg1 ` R ) = ( deg1 ` R ) |
| 7 |
|
eqid |
|- ( -g ` P ) = ( -g ` P ) |
| 8 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
| 9 |
1 2 3 6 7 8 4
|
q1peqb |
|- ( ( R e. Ring /\ F e. B /\ G e. C ) -> ( ( ( F Q G ) e. B /\ ( ( deg1 ` R ) ` ( F ( -g ` P ) ( ( F Q G ) ( .r ` P ) G ) ) ) < ( ( deg1 ` R ) ` G ) ) <-> ( F Q G ) = ( F Q G ) ) ) |
| 10 |
5 9
|
mpbiri |
|- ( ( R e. Ring /\ F e. B /\ G e. C ) -> ( ( F Q G ) e. B /\ ( ( deg1 ` R ) ` ( F ( -g ` P ) ( ( F Q G ) ( .r ` P ) G ) ) ) < ( ( deg1 ` R ) ` G ) ) ) |
| 11 |
10
|
simpld |
|- ( ( R e. Ring /\ F e. B /\ G e. C ) -> ( F Q G ) e. B ) |