| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r1pval.e |
|- E = ( rem1p ` R ) |
| 2 |
|
r1pval.p |
|- P = ( Poly1 ` R ) |
| 3 |
|
r1pval.b |
|- B = ( Base ` P ) |
| 4 |
|
r1pval.q |
|- Q = ( quot1p ` R ) |
| 5 |
|
r1pval.t |
|- .x. = ( .r ` P ) |
| 6 |
|
r1pval.m |
|- .- = ( -g ` P ) |
| 7 |
2 3
|
elbasfv |
|- ( F e. B -> R e. _V ) |
| 8 |
7
|
adantr |
|- ( ( F e. B /\ G e. B ) -> R e. _V ) |
| 9 |
|
fveq2 |
|- ( r = R -> ( Poly1 ` r ) = ( Poly1 ` R ) ) |
| 10 |
9 2
|
eqtr4di |
|- ( r = R -> ( Poly1 ` r ) = P ) |
| 11 |
10
|
fveq2d |
|- ( r = R -> ( Base ` ( Poly1 ` r ) ) = ( Base ` P ) ) |
| 12 |
11 3
|
eqtr4di |
|- ( r = R -> ( Base ` ( Poly1 ` r ) ) = B ) |
| 13 |
12
|
csbeq1d |
|- ( r = R -> [_ ( Base ` ( Poly1 ` r ) ) / b ]_ ( f e. b , g e. b |-> ( f ( -g ` ( Poly1 ` r ) ) ( ( f ( quot1p ` r ) g ) ( .r ` ( Poly1 ` r ) ) g ) ) ) = [_ B / b ]_ ( f e. b , g e. b |-> ( f ( -g ` ( Poly1 ` r ) ) ( ( f ( quot1p ` r ) g ) ( .r ` ( Poly1 ` r ) ) g ) ) ) ) |
| 14 |
3
|
fvexi |
|- B e. _V |
| 15 |
14
|
a1i |
|- ( r = R -> B e. _V ) |
| 16 |
|
simpr |
|- ( ( r = R /\ b = B ) -> b = B ) |
| 17 |
10
|
fveq2d |
|- ( r = R -> ( -g ` ( Poly1 ` r ) ) = ( -g ` P ) ) |
| 18 |
17 6
|
eqtr4di |
|- ( r = R -> ( -g ` ( Poly1 ` r ) ) = .- ) |
| 19 |
|
eqidd |
|- ( r = R -> f = f ) |
| 20 |
10
|
fveq2d |
|- ( r = R -> ( .r ` ( Poly1 ` r ) ) = ( .r ` P ) ) |
| 21 |
20 5
|
eqtr4di |
|- ( r = R -> ( .r ` ( Poly1 ` r ) ) = .x. ) |
| 22 |
|
fveq2 |
|- ( r = R -> ( quot1p ` r ) = ( quot1p ` R ) ) |
| 23 |
22 4
|
eqtr4di |
|- ( r = R -> ( quot1p ` r ) = Q ) |
| 24 |
23
|
oveqd |
|- ( r = R -> ( f ( quot1p ` r ) g ) = ( f Q g ) ) |
| 25 |
|
eqidd |
|- ( r = R -> g = g ) |
| 26 |
21 24 25
|
oveq123d |
|- ( r = R -> ( ( f ( quot1p ` r ) g ) ( .r ` ( Poly1 ` r ) ) g ) = ( ( f Q g ) .x. g ) ) |
| 27 |
18 19 26
|
oveq123d |
|- ( r = R -> ( f ( -g ` ( Poly1 ` r ) ) ( ( f ( quot1p ` r ) g ) ( .r ` ( Poly1 ` r ) ) g ) ) = ( f .- ( ( f Q g ) .x. g ) ) ) |
| 28 |
27
|
adantr |
|- ( ( r = R /\ b = B ) -> ( f ( -g ` ( Poly1 ` r ) ) ( ( f ( quot1p ` r ) g ) ( .r ` ( Poly1 ` r ) ) g ) ) = ( f .- ( ( f Q g ) .x. g ) ) ) |
| 29 |
16 16 28
|
mpoeq123dv |
|- ( ( r = R /\ b = B ) -> ( f e. b , g e. b |-> ( f ( -g ` ( Poly1 ` r ) ) ( ( f ( quot1p ` r ) g ) ( .r ` ( Poly1 ` r ) ) g ) ) ) = ( f e. B , g e. B |-> ( f .- ( ( f Q g ) .x. g ) ) ) ) |
| 30 |
15 29
|
csbied |
|- ( r = R -> [_ B / b ]_ ( f e. b , g e. b |-> ( f ( -g ` ( Poly1 ` r ) ) ( ( f ( quot1p ` r ) g ) ( .r ` ( Poly1 ` r ) ) g ) ) ) = ( f e. B , g e. B |-> ( f .- ( ( f Q g ) .x. g ) ) ) ) |
| 31 |
13 30
|
eqtrd |
|- ( r = R -> [_ ( Base ` ( Poly1 ` r ) ) / b ]_ ( f e. b , g e. b |-> ( f ( -g ` ( Poly1 ` r ) ) ( ( f ( quot1p ` r ) g ) ( .r ` ( Poly1 ` r ) ) g ) ) ) = ( f e. B , g e. B |-> ( f .- ( ( f Q g ) .x. g ) ) ) ) |
| 32 |
|
df-r1p |
|- rem1p = ( r e. _V |-> [_ ( Base ` ( Poly1 ` r ) ) / b ]_ ( f e. b , g e. b |-> ( f ( -g ` ( Poly1 ` r ) ) ( ( f ( quot1p ` r ) g ) ( .r ` ( Poly1 ` r ) ) g ) ) ) ) |
| 33 |
14 14
|
mpoex |
|- ( f e. B , g e. B |-> ( f .- ( ( f Q g ) .x. g ) ) ) e. _V |
| 34 |
31 32 33
|
fvmpt |
|- ( R e. _V -> ( rem1p ` R ) = ( f e. B , g e. B |-> ( f .- ( ( f Q g ) .x. g ) ) ) ) |
| 35 |
1 34
|
eqtrid |
|- ( R e. _V -> E = ( f e. B , g e. B |-> ( f .- ( ( f Q g ) .x. g ) ) ) ) |
| 36 |
8 35
|
syl |
|- ( ( F e. B /\ G e. B ) -> E = ( f e. B , g e. B |-> ( f .- ( ( f Q g ) .x. g ) ) ) ) |
| 37 |
|
simpl |
|- ( ( f = F /\ g = G ) -> f = F ) |
| 38 |
|
oveq12 |
|- ( ( f = F /\ g = G ) -> ( f Q g ) = ( F Q G ) ) |
| 39 |
|
simpr |
|- ( ( f = F /\ g = G ) -> g = G ) |
| 40 |
38 39
|
oveq12d |
|- ( ( f = F /\ g = G ) -> ( ( f Q g ) .x. g ) = ( ( F Q G ) .x. G ) ) |
| 41 |
37 40
|
oveq12d |
|- ( ( f = F /\ g = G ) -> ( f .- ( ( f Q g ) .x. g ) ) = ( F .- ( ( F Q G ) .x. G ) ) ) |
| 42 |
41
|
adantl |
|- ( ( ( F e. B /\ G e. B ) /\ ( f = F /\ g = G ) ) -> ( f .- ( ( f Q g ) .x. g ) ) = ( F .- ( ( F Q G ) .x. G ) ) ) |
| 43 |
|
simpl |
|- ( ( F e. B /\ G e. B ) -> F e. B ) |
| 44 |
|
simpr |
|- ( ( F e. B /\ G e. B ) -> G e. B ) |
| 45 |
|
ovexd |
|- ( ( F e. B /\ G e. B ) -> ( F .- ( ( F Q G ) .x. G ) ) e. _V ) |
| 46 |
36 42 43 44 45
|
ovmpod |
|- ( ( F e. B /\ G e. B ) -> ( F E G ) = ( F .- ( ( F Q G ) .x. G ) ) ) |