| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cr1p |
|- rem1p |
| 1 |
|
vr |
|- r |
| 2 |
|
cvv |
|- _V |
| 3 |
|
cbs |
|- Base |
| 4 |
|
cpl1 |
|- Poly1 |
| 5 |
1
|
cv |
|- r |
| 6 |
5 4
|
cfv |
|- ( Poly1 ` r ) |
| 7 |
6 3
|
cfv |
|- ( Base ` ( Poly1 ` r ) ) |
| 8 |
|
vb |
|- b |
| 9 |
|
vf |
|- f |
| 10 |
8
|
cv |
|- b |
| 11 |
|
vg |
|- g |
| 12 |
9
|
cv |
|- f |
| 13 |
|
csg |
|- -g |
| 14 |
6 13
|
cfv |
|- ( -g ` ( Poly1 ` r ) ) |
| 15 |
|
cq1p |
|- quot1p |
| 16 |
5 15
|
cfv |
|- ( quot1p ` r ) |
| 17 |
11
|
cv |
|- g |
| 18 |
12 17 16
|
co |
|- ( f ( quot1p ` r ) g ) |
| 19 |
|
cmulr |
|- .r |
| 20 |
6 19
|
cfv |
|- ( .r ` ( Poly1 ` r ) ) |
| 21 |
18 17 20
|
co |
|- ( ( f ( quot1p ` r ) g ) ( .r ` ( Poly1 ` r ) ) g ) |
| 22 |
12 21 14
|
co |
|- ( f ( -g ` ( Poly1 ` r ) ) ( ( f ( quot1p ` r ) g ) ( .r ` ( Poly1 ` r ) ) g ) ) |
| 23 |
9 11 10 10 22
|
cmpo |
|- ( f e. b , g e. b |-> ( f ( -g ` ( Poly1 ` r ) ) ( ( f ( quot1p ` r ) g ) ( .r ` ( Poly1 ` r ) ) g ) ) ) |
| 24 |
8 7 23
|
csb |
|- [_ ( Base ` ( Poly1 ` r ) ) / b ]_ ( f e. b , g e. b |-> ( f ( -g ` ( Poly1 ` r ) ) ( ( f ( quot1p ` r ) g ) ( .r ` ( Poly1 ` r ) ) g ) ) ) |
| 25 |
1 2 24
|
cmpt |
|- ( r e. _V |-> [_ ( Base ` ( Poly1 ` r ) ) / b ]_ ( f e. b , g e. b |-> ( f ( -g ` ( Poly1 ` r ) ) ( ( f ( quot1p ` r ) g ) ( .r ` ( Poly1 ` r ) ) g ) ) ) ) |
| 26 |
0 25
|
wceq |
|- rem1p = ( r e. _V |-> [_ ( Base ` ( Poly1 ` r ) ) / b ]_ ( f e. b , g e. b |-> ( f ( -g ` ( Poly1 ` r ) ) ( ( f ( quot1p ` r ) g ) ( .r ` ( Poly1 ` r ) ) g ) ) ) ) |