| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cr1p |
⊢ rem1p |
| 1 |
|
vr |
⊢ 𝑟 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
cbs |
⊢ Base |
| 4 |
|
cpl1 |
⊢ Poly1 |
| 5 |
1
|
cv |
⊢ 𝑟 |
| 6 |
5 4
|
cfv |
⊢ ( Poly1 ‘ 𝑟 ) |
| 7 |
6 3
|
cfv |
⊢ ( Base ‘ ( Poly1 ‘ 𝑟 ) ) |
| 8 |
|
vb |
⊢ 𝑏 |
| 9 |
|
vf |
⊢ 𝑓 |
| 10 |
8
|
cv |
⊢ 𝑏 |
| 11 |
|
vg |
⊢ 𝑔 |
| 12 |
9
|
cv |
⊢ 𝑓 |
| 13 |
|
csg |
⊢ -g |
| 14 |
6 13
|
cfv |
⊢ ( -g ‘ ( Poly1 ‘ 𝑟 ) ) |
| 15 |
|
cq1p |
⊢ quot1p |
| 16 |
5 15
|
cfv |
⊢ ( quot1p ‘ 𝑟 ) |
| 17 |
11
|
cv |
⊢ 𝑔 |
| 18 |
12 17 16
|
co |
⊢ ( 𝑓 ( quot1p ‘ 𝑟 ) 𝑔 ) |
| 19 |
|
cmulr |
⊢ .r |
| 20 |
6 19
|
cfv |
⊢ ( .r ‘ ( Poly1 ‘ 𝑟 ) ) |
| 21 |
18 17 20
|
co |
⊢ ( ( 𝑓 ( quot1p ‘ 𝑟 ) 𝑔 ) ( .r ‘ ( Poly1 ‘ 𝑟 ) ) 𝑔 ) |
| 22 |
12 21 14
|
co |
⊢ ( 𝑓 ( -g ‘ ( Poly1 ‘ 𝑟 ) ) ( ( 𝑓 ( quot1p ‘ 𝑟 ) 𝑔 ) ( .r ‘ ( Poly1 ‘ 𝑟 ) ) 𝑔 ) ) |
| 23 |
9 11 10 10 22
|
cmpo |
⊢ ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑓 ( -g ‘ ( Poly1 ‘ 𝑟 ) ) ( ( 𝑓 ( quot1p ‘ 𝑟 ) 𝑔 ) ( .r ‘ ( Poly1 ‘ 𝑟 ) ) 𝑔 ) ) ) |
| 24 |
8 7 23
|
csb |
⊢ ⦋ ( Base ‘ ( Poly1 ‘ 𝑟 ) ) / 𝑏 ⦌ ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑓 ( -g ‘ ( Poly1 ‘ 𝑟 ) ) ( ( 𝑓 ( quot1p ‘ 𝑟 ) 𝑔 ) ( .r ‘ ( Poly1 ‘ 𝑟 ) ) 𝑔 ) ) ) |
| 25 |
1 2 24
|
cmpt |
⊢ ( 𝑟 ∈ V ↦ ⦋ ( Base ‘ ( Poly1 ‘ 𝑟 ) ) / 𝑏 ⦌ ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑓 ( -g ‘ ( Poly1 ‘ 𝑟 ) ) ( ( 𝑓 ( quot1p ‘ 𝑟 ) 𝑔 ) ( .r ‘ ( Poly1 ‘ 𝑟 ) ) 𝑔 ) ) ) ) |
| 26 |
0 25
|
wceq |
⊢ rem1p = ( 𝑟 ∈ V ↦ ⦋ ( Base ‘ ( Poly1 ‘ 𝑟 ) ) / 𝑏 ⦌ ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑓 ( -g ‘ ( Poly1 ‘ 𝑟 ) ) ( ( 𝑓 ( quot1p ‘ 𝑟 ) 𝑔 ) ( .r ‘ ( Poly1 ‘ 𝑟 ) ) 𝑔 ) ) ) ) |