Metamath Proof Explorer


Definition df-r1p

Description: Define the remainder after dividing two univariate polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Assertion df-r1p rem1p=rVBasePoly1r/bfb,gbf-Poly1rfquot1prgPoly1rg

Detailed syntax breakdown

Step Hyp Ref Expression
0 cr1p classrem1p
1 vr setvarr
2 cvv classV
3 cbs classBase
4 cpl1 classPoly1
5 1 cv setvarr
6 5 4 cfv classPoly1r
7 6 3 cfv classBasePoly1r
8 vb setvarb
9 vf setvarf
10 8 cv setvarb
11 vg setvarg
12 9 cv setvarf
13 csg class-𝑔
14 6 13 cfv class-Poly1r
15 cq1p classquot1p
16 5 15 cfv classquot1pr
17 11 cv setvarg
18 12 17 16 co classfquot1prg
19 cmulr class𝑟
20 6 19 cfv classPoly1r
21 18 17 20 co classfquot1prgPoly1rg
22 12 21 14 co classf-Poly1rfquot1prgPoly1rg
23 9 11 10 10 22 cmpo classfb,gbf-Poly1rfquot1prgPoly1rg
24 8 7 23 csb classBasePoly1r/bfb,gbf-Poly1rfquot1prgPoly1rg
25 1 2 24 cmpt classrVBasePoly1r/bfb,gbf-Poly1rfquot1prgPoly1rg
26 0 25 wceq wffrem1p=rVBasePoly1r/bfb,gbf-Poly1rfquot1prgPoly1rg