Metamath Proof Explorer


Theorem r1pcl

Description: Closure of remainder following division by a unitic polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses r1pval.e
|- E = ( rem1p ` R )
r1pval.p
|- P = ( Poly1 ` R )
r1pval.b
|- B = ( Base ` P )
r1pcl.c
|- C = ( Unic1p ` R )
Assertion r1pcl
|- ( ( R e. Ring /\ F e. B /\ G e. C ) -> ( F E G ) e. B )

Proof

Step Hyp Ref Expression
1 r1pval.e
 |-  E = ( rem1p ` R )
2 r1pval.p
 |-  P = ( Poly1 ` R )
3 r1pval.b
 |-  B = ( Base ` P )
4 r1pcl.c
 |-  C = ( Unic1p ` R )
5 simp2
 |-  ( ( R e. Ring /\ F e. B /\ G e. C ) -> F e. B )
6 2 3 4 uc1pcl
 |-  ( G e. C -> G e. B )
7 6 3ad2ant3
 |-  ( ( R e. Ring /\ F e. B /\ G e. C ) -> G e. B )
8 eqid
 |-  ( quot1p ` R ) = ( quot1p ` R )
9 eqid
 |-  ( .r ` P ) = ( .r ` P )
10 eqid
 |-  ( -g ` P ) = ( -g ` P )
11 1 2 3 8 9 10 r1pval
 |-  ( ( F e. B /\ G e. B ) -> ( F E G ) = ( F ( -g ` P ) ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) ) )
12 5 7 11 syl2anc
 |-  ( ( R e. Ring /\ F e. B /\ G e. C ) -> ( F E G ) = ( F ( -g ` P ) ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) ) )
13 2 ply1ring
 |-  ( R e. Ring -> P e. Ring )
14 13 3ad2ant1
 |-  ( ( R e. Ring /\ F e. B /\ G e. C ) -> P e. Ring )
15 ringgrp
 |-  ( P e. Ring -> P e. Grp )
16 14 15 syl
 |-  ( ( R e. Ring /\ F e. B /\ G e. C ) -> P e. Grp )
17 8 2 3 4 q1pcl
 |-  ( ( R e. Ring /\ F e. B /\ G e. C ) -> ( F ( quot1p ` R ) G ) e. B )
18 3 9 ringcl
 |-  ( ( P e. Ring /\ ( F ( quot1p ` R ) G ) e. B /\ G e. B ) -> ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) e. B )
19 14 17 7 18 syl3anc
 |-  ( ( R e. Ring /\ F e. B /\ G e. C ) -> ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) e. B )
20 3 10 grpsubcl
 |-  ( ( P e. Grp /\ F e. B /\ ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) e. B ) -> ( F ( -g ` P ) ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) ) e. B )
21 16 5 19 20 syl3anc
 |-  ( ( R e. Ring /\ F e. B /\ G e. C ) -> ( F ( -g ` P ) ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) ) e. B )
22 12 21 eqeltrd
 |-  ( ( R e. Ring /\ F e. B /\ G e. C ) -> ( F E G ) e. B )