Metamath Proof Explorer


Theorem r1pcl

Description: Closure of remainder following division by a unitic polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses r1pval.e E=rem1pR
r1pval.p P=Poly1R
r1pval.b B=BaseP
r1pcl.c C=Unic1pR
Assertion r1pcl RRingFBGCFEGB

Proof

Step Hyp Ref Expression
1 r1pval.e E=rem1pR
2 r1pval.p P=Poly1R
3 r1pval.b B=BaseP
4 r1pcl.c C=Unic1pR
5 simp2 RRingFBGCFB
6 2 3 4 uc1pcl GCGB
7 6 3ad2ant3 RRingFBGCGB
8 eqid quot1pR=quot1pR
9 eqid P=P
10 eqid -P=-P
11 1 2 3 8 9 10 r1pval FBGBFEG=F-PFquot1pRGPG
12 5 7 11 syl2anc RRingFBGCFEG=F-PFquot1pRGPG
13 2 ply1ring RRingPRing
14 13 3ad2ant1 RRingFBGCPRing
15 ringgrp PRingPGrp
16 14 15 syl RRingFBGCPGrp
17 8 2 3 4 q1pcl RRingFBGCFquot1pRGB
18 3 9 ringcl PRingFquot1pRGBGBFquot1pRGPGB
19 14 17 7 18 syl3anc RRingFBGCFquot1pRGPGB
20 3 10 grpsubcl PGrpFBFquot1pRGPGBF-PFquot1pRGPGB
21 16 5 19 20 syl3anc RRingFBGCF-PFquot1pRGPGB
22 12 21 eqeltrd RRingFBGCFEGB