Metamath Proof Explorer


Theorem r1pdeglt

Description: The remainder has a degree smaller than the divisor. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses r1pval.e E=rem1pR
r1pval.p P=Poly1R
r1pval.b B=BaseP
r1pcl.c C=Unic1pR
r1pdeglt.d D=deg1R
Assertion r1pdeglt RRingFBGCDFEG<DG

Proof

Step Hyp Ref Expression
1 r1pval.e E=rem1pR
2 r1pval.p P=Poly1R
3 r1pval.b B=BaseP
4 r1pcl.c C=Unic1pR
5 r1pdeglt.d D=deg1R
6 simp2 RRingFBGCFB
7 2 3 4 uc1pcl GCGB
8 7 3ad2ant3 RRingFBGCGB
9 eqid quot1pR=quot1pR
10 eqid P=P
11 eqid -P=-P
12 1 2 3 9 10 11 r1pval FBGBFEG=F-PFquot1pRGPG
13 6 8 12 syl2anc RRingFBGCFEG=F-PFquot1pRGPG
14 13 fveq2d RRingFBGCDFEG=DF-PFquot1pRGPG
15 eqid Fquot1pRG=Fquot1pRG
16 9 2 3 5 11 10 4 q1peqb RRingFBGCFquot1pRGBDF-PFquot1pRGPG<DGFquot1pRG=Fquot1pRG
17 15 16 mpbiri RRingFBGCFquot1pRGBDF-PFquot1pRGPG<DG
18 17 simprd RRingFBGCDF-PFquot1pRGPG<DG
19 14 18 eqbrtrd RRingFBGCDFEG<DG