Description: The remainder has a degree smaller than the divisor. (Contributed by Stefan O'Rear, 28-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | r1pval.e | |
|
r1pval.p | |
||
r1pval.b | |
||
r1pcl.c | |
||
r1pdeglt.d | |
||
Assertion | r1pdeglt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1pval.e | |
|
2 | r1pval.p | |
|
3 | r1pval.b | |
|
4 | r1pcl.c | |
|
5 | r1pdeglt.d | |
|
6 | simp2 | |
|
7 | 2 3 4 | uc1pcl | |
8 | 7 | 3ad2ant3 | |
9 | eqid | |
|
10 | eqid | |
|
11 | eqid | |
|
12 | 1 2 3 9 10 11 | r1pval | |
13 | 6 8 12 | syl2anc | |
14 | 13 | fveq2d | |
15 | eqid | |
|
16 | 9 2 3 5 11 10 4 | q1peqb | |
17 | 15 16 | mpbiri | |
18 | 17 | simprd | |
19 | 14 18 | eqbrtrd | |