Metamath Proof Explorer


Theorem qlax2i

Description: One of the equations showing CH is an ortholattice. (This corresponds to axiom "ax-2" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses qlax.1
|- A e. CH
qlax.2
|- B e. CH
Assertion qlax2i
|- ( A vH B ) = ( B vH A )

Proof

Step Hyp Ref Expression
1 qlax.1
 |-  A e. CH
2 qlax.2
 |-  B e. CH
3 1 2 chjcomi
 |-  ( A vH B ) = ( B vH A )