Metamath Proof Explorer


Theorem qlax3i

Description: One of the equations showing CH is an ortholattice. (This corresponds to axiom "ax-3" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses qlax.1
|- A e. CH
qlax.2
|- B e. CH
qlax.3
|- C e. CH
Assertion qlax3i
|- ( ( A vH B ) vH C ) = ( A vH ( B vH C ) )

Proof

Step Hyp Ref Expression
1 qlax.1
 |-  A e. CH
2 qlax.2
 |-  B e. CH
3 qlax.3
 |-  C e. CH
4 1 2 3 chjassi
 |-  ( ( A vH B ) vH C ) = ( A vH ( B vH C ) )