Metamath Proof Explorer


Theorem qlax4i

Description: One of the equations showing CH is an ortholattice. (This corresponds to axiom "ax-4" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses qlax.1
|- A e. CH
qlax.2
|- B e. CH
Assertion qlax4i
|- ( A vH ( B vH ( _|_ ` B ) ) ) = ( B vH ( _|_ ` B ) )

Proof

Step Hyp Ref Expression
1 qlax.1
 |-  A e. CH
2 qlax.2
 |-  B e. CH
3 1 chj1i
 |-  ( A vH ~H ) = ~H
4 2 chjoi
 |-  ( B vH ( _|_ ` B ) ) = ~H
5 4 oveq2i
 |-  ( A vH ( B vH ( _|_ ` B ) ) ) = ( A vH ~H )
6 3 5 4 3eqtr4i
 |-  ( A vH ( B vH ( _|_ ` B ) ) ) = ( B vH ( _|_ ` B ) )