Metamath Proof Explorer


Theorem qlax4i

Description: One of the equations showing CH is an ortholattice. (This corresponds to axiom "ax-4" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses qlax.1 𝐴C
qlax.2 𝐵C
Assertion qlax4i ( 𝐴 ( 𝐵 ( ⊥ ‘ 𝐵 ) ) ) = ( 𝐵 ( ⊥ ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 qlax.1 𝐴C
2 qlax.2 𝐵C
3 1 chj1i ( 𝐴 ℋ ) = ℋ
4 2 chjoi ( 𝐵 ( ⊥ ‘ 𝐵 ) ) = ℋ
5 4 oveq2i ( 𝐴 ( 𝐵 ( ⊥ ‘ 𝐵 ) ) ) = ( 𝐴 ℋ )
6 3 5 4 3eqtr4i ( 𝐴 ( 𝐵 ( ⊥ ‘ 𝐵 ) ) ) = ( 𝐵 ( ⊥ ‘ 𝐵 ) )