| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ch0le.1 |  |-  A e. CH | 
						
							| 2 |  | chjcl.2 |  |-  B e. CH | 
						
							| 3 |  | chjass.3 |  |-  C e. CH | 
						
							| 4 |  | inass |  |-  ( ( ( _|_ ` A ) i^i ( _|_ ` B ) ) i^i ( _|_ ` C ) ) = ( ( _|_ ` A ) i^i ( ( _|_ ` B ) i^i ( _|_ ` C ) ) ) | 
						
							| 5 | 1 2 | chdmj1i |  |-  ( _|_ ` ( A vH B ) ) = ( ( _|_ ` A ) i^i ( _|_ ` B ) ) | 
						
							| 6 | 5 | ineq1i |  |-  ( ( _|_ ` ( A vH B ) ) i^i ( _|_ ` C ) ) = ( ( ( _|_ ` A ) i^i ( _|_ ` B ) ) i^i ( _|_ ` C ) ) | 
						
							| 7 | 2 3 | chdmj1i |  |-  ( _|_ ` ( B vH C ) ) = ( ( _|_ ` B ) i^i ( _|_ ` C ) ) | 
						
							| 8 | 7 | ineq2i |  |-  ( ( _|_ ` A ) i^i ( _|_ ` ( B vH C ) ) ) = ( ( _|_ ` A ) i^i ( ( _|_ ` B ) i^i ( _|_ ` C ) ) ) | 
						
							| 9 | 4 6 8 | 3eqtr4i |  |-  ( ( _|_ ` ( A vH B ) ) i^i ( _|_ ` C ) ) = ( ( _|_ ` A ) i^i ( _|_ ` ( B vH C ) ) ) | 
						
							| 10 | 9 | fveq2i |  |-  ( _|_ ` ( ( _|_ ` ( A vH B ) ) i^i ( _|_ ` C ) ) ) = ( _|_ ` ( ( _|_ ` A ) i^i ( _|_ ` ( B vH C ) ) ) ) | 
						
							| 11 | 1 2 | chjcli |  |-  ( A vH B ) e. CH | 
						
							| 12 | 11 3 | chdmm4i |  |-  ( _|_ ` ( ( _|_ ` ( A vH B ) ) i^i ( _|_ ` C ) ) ) = ( ( A vH B ) vH C ) | 
						
							| 13 | 2 3 | chjcli |  |-  ( B vH C ) e. CH | 
						
							| 14 | 1 13 | chdmm4i |  |-  ( _|_ ` ( ( _|_ ` A ) i^i ( _|_ ` ( B vH C ) ) ) ) = ( A vH ( B vH C ) ) | 
						
							| 15 | 10 12 14 | 3eqtr3i |  |-  ( ( A vH B ) vH C ) = ( A vH ( B vH C ) ) |