| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ch0le.1 |  |-  A e. CH | 
						
							| 2 |  | chjcl.2 |  |-  B e. CH | 
						
							| 3 |  | oveq12 |  |-  ( ( A = 0H /\ B = 0H ) -> ( A vH B ) = ( 0H vH 0H ) ) | 
						
							| 4 |  | h0elch |  |-  0H e. CH | 
						
							| 5 | 4 | chj0i |  |-  ( 0H vH 0H ) = 0H | 
						
							| 6 | 3 5 | eqtrdi |  |-  ( ( A = 0H /\ B = 0H ) -> ( A vH B ) = 0H ) | 
						
							| 7 | 1 2 | chub1i |  |-  A C_ ( A vH B ) | 
						
							| 8 |  | sseq2 |  |-  ( ( A vH B ) = 0H -> ( A C_ ( A vH B ) <-> A C_ 0H ) ) | 
						
							| 9 | 7 8 | mpbii |  |-  ( ( A vH B ) = 0H -> A C_ 0H ) | 
						
							| 10 | 1 | chle0i |  |-  ( A C_ 0H <-> A = 0H ) | 
						
							| 11 | 9 10 | sylib |  |-  ( ( A vH B ) = 0H -> A = 0H ) | 
						
							| 12 | 2 1 | chub2i |  |-  B C_ ( A vH B ) | 
						
							| 13 |  | sseq2 |  |-  ( ( A vH B ) = 0H -> ( B C_ ( A vH B ) <-> B C_ 0H ) ) | 
						
							| 14 | 12 13 | mpbii |  |-  ( ( A vH B ) = 0H -> B C_ 0H ) | 
						
							| 15 | 2 | chle0i |  |-  ( B C_ 0H <-> B = 0H ) | 
						
							| 16 | 14 15 | sylib |  |-  ( ( A vH B ) = 0H -> B = 0H ) | 
						
							| 17 | 11 16 | jca |  |-  ( ( A vH B ) = 0H -> ( A = 0H /\ B = 0H ) ) | 
						
							| 18 | 6 17 | impbii |  |-  ( ( A = 0H /\ B = 0H ) <-> ( A vH B ) = 0H ) |