| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ch0le.1 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 2 |  | chjcl.2 | ⊢ 𝐵  ∈   Cℋ | 
						
							| 3 |  | oveq12 | ⊢ ( ( 𝐴  =  0ℋ  ∧  𝐵  =  0ℋ )  →  ( 𝐴  ∨ℋ  𝐵 )  =  ( 0ℋ  ∨ℋ  0ℋ ) ) | 
						
							| 4 |  | h0elch | ⊢ 0ℋ  ∈   Cℋ | 
						
							| 5 | 4 | chj0i | ⊢ ( 0ℋ  ∨ℋ  0ℋ )  =  0ℋ | 
						
							| 6 | 3 5 | eqtrdi | ⊢ ( ( 𝐴  =  0ℋ  ∧  𝐵  =  0ℋ )  →  ( 𝐴  ∨ℋ  𝐵 )  =  0ℋ ) | 
						
							| 7 | 1 2 | chub1i | ⊢ 𝐴  ⊆  ( 𝐴  ∨ℋ  𝐵 ) | 
						
							| 8 |  | sseq2 | ⊢ ( ( 𝐴  ∨ℋ  𝐵 )  =  0ℋ  →  ( 𝐴  ⊆  ( 𝐴  ∨ℋ  𝐵 )  ↔  𝐴  ⊆  0ℋ ) ) | 
						
							| 9 | 7 8 | mpbii | ⊢ ( ( 𝐴  ∨ℋ  𝐵 )  =  0ℋ  →  𝐴  ⊆  0ℋ ) | 
						
							| 10 | 1 | chle0i | ⊢ ( 𝐴  ⊆  0ℋ  ↔  𝐴  =  0ℋ ) | 
						
							| 11 | 9 10 | sylib | ⊢ ( ( 𝐴  ∨ℋ  𝐵 )  =  0ℋ  →  𝐴  =  0ℋ ) | 
						
							| 12 | 2 1 | chub2i | ⊢ 𝐵  ⊆  ( 𝐴  ∨ℋ  𝐵 ) | 
						
							| 13 |  | sseq2 | ⊢ ( ( 𝐴  ∨ℋ  𝐵 )  =  0ℋ  →  ( 𝐵  ⊆  ( 𝐴  ∨ℋ  𝐵 )  ↔  𝐵  ⊆  0ℋ ) ) | 
						
							| 14 | 12 13 | mpbii | ⊢ ( ( 𝐴  ∨ℋ  𝐵 )  =  0ℋ  →  𝐵  ⊆  0ℋ ) | 
						
							| 15 | 2 | chle0i | ⊢ ( 𝐵  ⊆  0ℋ  ↔  𝐵  =  0ℋ ) | 
						
							| 16 | 14 15 | sylib | ⊢ ( ( 𝐴  ∨ℋ  𝐵 )  =  0ℋ  →  𝐵  =  0ℋ ) | 
						
							| 17 | 11 16 | jca | ⊢ ( ( 𝐴  ∨ℋ  𝐵 )  =  0ℋ  →  ( 𝐴  =  0ℋ  ∧  𝐵  =  0ℋ ) ) | 
						
							| 18 | 6 17 | impbii | ⊢ ( ( 𝐴  =  0ℋ  ∧  𝐵  =  0ℋ )  ↔  ( 𝐴  ∨ℋ  𝐵 )  =  0ℋ ) |