| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ch0le.1 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 2 |  | chjcl.2 | ⊢ 𝐵  ∈   Cℋ | 
						
							| 3 |  | chjass.3 | ⊢ 𝐶  ∈   Cℋ | 
						
							| 4 |  | inass | ⊢ ( ( ( ⊥ ‘ 𝐴 )  ∩  ( ⊥ ‘ 𝐵 ) )  ∩  ( ⊥ ‘ 𝐶 ) )  =  ( ( ⊥ ‘ 𝐴 )  ∩  ( ( ⊥ ‘ 𝐵 )  ∩  ( ⊥ ‘ 𝐶 ) ) ) | 
						
							| 5 | 1 2 | chdmj1i | ⊢ ( ⊥ ‘ ( 𝐴  ∨ℋ  𝐵 ) )  =  ( ( ⊥ ‘ 𝐴 )  ∩  ( ⊥ ‘ 𝐵 ) ) | 
						
							| 6 | 5 | ineq1i | ⊢ ( ( ⊥ ‘ ( 𝐴  ∨ℋ  𝐵 ) )  ∩  ( ⊥ ‘ 𝐶 ) )  =  ( ( ( ⊥ ‘ 𝐴 )  ∩  ( ⊥ ‘ 𝐵 ) )  ∩  ( ⊥ ‘ 𝐶 ) ) | 
						
							| 7 | 2 3 | chdmj1i | ⊢ ( ⊥ ‘ ( 𝐵  ∨ℋ  𝐶 ) )  =  ( ( ⊥ ‘ 𝐵 )  ∩  ( ⊥ ‘ 𝐶 ) ) | 
						
							| 8 | 7 | ineq2i | ⊢ ( ( ⊥ ‘ 𝐴 )  ∩  ( ⊥ ‘ ( 𝐵  ∨ℋ  𝐶 ) ) )  =  ( ( ⊥ ‘ 𝐴 )  ∩  ( ( ⊥ ‘ 𝐵 )  ∩  ( ⊥ ‘ 𝐶 ) ) ) | 
						
							| 9 | 4 6 8 | 3eqtr4i | ⊢ ( ( ⊥ ‘ ( 𝐴  ∨ℋ  𝐵 ) )  ∩  ( ⊥ ‘ 𝐶 ) )  =  ( ( ⊥ ‘ 𝐴 )  ∩  ( ⊥ ‘ ( 𝐵  ∨ℋ  𝐶 ) ) ) | 
						
							| 10 | 9 | fveq2i | ⊢ ( ⊥ ‘ ( ( ⊥ ‘ ( 𝐴  ∨ℋ  𝐵 ) )  ∩  ( ⊥ ‘ 𝐶 ) ) )  =  ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 )  ∩  ( ⊥ ‘ ( 𝐵  ∨ℋ  𝐶 ) ) ) ) | 
						
							| 11 | 1 2 | chjcli | ⊢ ( 𝐴  ∨ℋ  𝐵 )  ∈   Cℋ | 
						
							| 12 | 11 3 | chdmm4i | ⊢ ( ⊥ ‘ ( ( ⊥ ‘ ( 𝐴  ∨ℋ  𝐵 ) )  ∩  ( ⊥ ‘ 𝐶 ) ) )  =  ( ( 𝐴  ∨ℋ  𝐵 )  ∨ℋ  𝐶 ) | 
						
							| 13 | 2 3 | chjcli | ⊢ ( 𝐵  ∨ℋ  𝐶 )  ∈   Cℋ | 
						
							| 14 | 1 13 | chdmm4i | ⊢ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 )  ∩  ( ⊥ ‘ ( 𝐵  ∨ℋ  𝐶 ) ) ) )  =  ( 𝐴  ∨ℋ  ( 𝐵  ∨ℋ  𝐶 ) ) | 
						
							| 15 | 10 12 14 | 3eqtr3i | ⊢ ( ( 𝐴  ∨ℋ  𝐵 )  ∨ℋ  𝐶 )  =  ( 𝐴  ∨ℋ  ( 𝐵  ∨ℋ  𝐶 ) ) |