Metamath Proof Explorer


Theorem qlaxr5i

Description: One of the conditions showing CH is an ortholattice. (This corresponds to axiom "ax-r5" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses qlaxr5.1
|- A e. CH
qlaxr5.2
|- B e. CH
qlaxr5.3
|- C e. CH
qlaxr5.4
|- A = B
Assertion qlaxr5i
|- ( A vH C ) = ( B vH C )

Proof

Step Hyp Ref Expression
1 qlaxr5.1
 |-  A e. CH
2 qlaxr5.2
 |-  B e. CH
3 qlaxr5.3
 |-  C e. CH
4 qlaxr5.4
 |-  A = B
5 4 oveq1i
 |-  ( A vH C ) = ( B vH C )