| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qlaxr3.1 |  |-  A e. CH | 
						
							| 2 |  | qlaxr3.2 |  |-  B e. CH | 
						
							| 3 |  | qlaxr3.3 |  |-  C e. CH | 
						
							| 4 |  | qlaxr3.4 |  |-  ( C vH ( _|_ ` C ) ) = ( ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) vH ( _|_ ` ( A vH B ) ) ) | 
						
							| 5 | 1 2 | chjcli |  |-  ( A vH B ) e. CH | 
						
							| 6 | 5 | chshii |  |-  ( A vH B ) e. SH | 
						
							| 7 | 1 2 | chub1i |  |-  A C_ ( A vH B ) | 
						
							| 8 |  | incom |  |-  ( ( A vH B ) i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) = ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( A vH B ) ) | 
						
							| 9 | 1 | choccli |  |-  ( _|_ ` A ) e. CH | 
						
							| 10 | 2 | choccli |  |-  ( _|_ ` B ) e. CH | 
						
							| 11 | 1 2 | cmj1i |  |-  A C_H ( A vH B ) | 
						
							| 12 | 1 5 11 | cmcmii |  |-  ( A vH B ) C_H A | 
						
							| 13 | 5 1 12 | cmcm2ii |  |-  ( A vH B ) C_H ( _|_ ` A ) | 
						
							| 14 | 1 2 | cmj2i |  |-  B C_H ( A vH B ) | 
						
							| 15 | 2 5 14 | cmcmii |  |-  ( A vH B ) C_H B | 
						
							| 16 | 5 2 15 | cmcm2ii |  |-  ( A vH B ) C_H ( _|_ ` B ) | 
						
							| 17 | 5 9 10 13 16 | fh1i |  |-  ( ( A vH B ) i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) = ( ( ( A vH B ) i^i ( _|_ ` A ) ) vH ( ( A vH B ) i^i ( _|_ ` B ) ) ) | 
						
							| 18 | 8 17 | eqtr3i |  |-  ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( A vH B ) ) = ( ( ( A vH B ) i^i ( _|_ ` A ) ) vH ( ( A vH B ) i^i ( _|_ ` B ) ) ) | 
						
							| 19 | 3 | chjoi |  |-  ( C vH ( _|_ ` C ) ) = ~H | 
						
							| 20 | 19 4 | eqtr3i |  |-  ~H = ( ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) vH ( _|_ ` ( A vH B ) ) ) | 
						
							| 21 |  | choc0 |  |-  ( _|_ ` 0H ) = ~H | 
						
							| 22 | 9 10 | chjcli |  |-  ( ( _|_ ` A ) vH ( _|_ ` B ) ) e. CH | 
						
							| 23 | 22 5 | chdmm1i |  |-  ( _|_ ` ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( A vH B ) ) ) = ( ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) vH ( _|_ ` ( A vH B ) ) ) | 
						
							| 24 | 20 21 23 | 3eqtr4i |  |-  ( _|_ ` 0H ) = ( _|_ ` ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( A vH B ) ) ) | 
						
							| 25 | 22 5 | chincli |  |-  ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( A vH B ) ) e. CH | 
						
							| 26 |  | h0elch |  |-  0H e. CH | 
						
							| 27 | 25 26 | chcon3i |  |-  ( ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( A vH B ) ) = 0H <-> ( _|_ ` 0H ) = ( _|_ ` ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( A vH B ) ) ) ) | 
						
							| 28 | 24 27 | mpbir |  |-  ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( A vH B ) ) = 0H | 
						
							| 29 | 18 28 | eqtr3i |  |-  ( ( ( A vH B ) i^i ( _|_ ` A ) ) vH ( ( A vH B ) i^i ( _|_ ` B ) ) ) = 0H | 
						
							| 30 | 5 9 | chincli |  |-  ( ( A vH B ) i^i ( _|_ ` A ) ) e. CH | 
						
							| 31 | 5 10 | chincli |  |-  ( ( A vH B ) i^i ( _|_ ` B ) ) e. CH | 
						
							| 32 | 30 31 | chj00i |  |-  ( ( ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H /\ ( ( A vH B ) i^i ( _|_ ` B ) ) = 0H ) <-> ( ( ( A vH B ) i^i ( _|_ ` A ) ) vH ( ( A vH B ) i^i ( _|_ ` B ) ) ) = 0H ) | 
						
							| 33 | 29 32 | mpbir |  |-  ( ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H /\ ( ( A vH B ) i^i ( _|_ ` B ) ) = 0H ) | 
						
							| 34 | 33 | simpli |  |-  ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H | 
						
							| 35 | 1 6 7 34 | omlsii |  |-  A = ( A vH B ) | 
						
							| 36 | 2 1 | chub2i |  |-  B C_ ( A vH B ) | 
						
							| 37 | 33 | simpri |  |-  ( ( A vH B ) i^i ( _|_ ` B ) ) = 0H | 
						
							| 38 | 2 6 36 37 | omlsii |  |-  B = ( A vH B ) | 
						
							| 39 | 35 38 | eqtr4i |  |-  A = B |