Step |
Hyp |
Ref |
Expression |
1 |
|
qlaxr3.1 |
|- A e. CH |
2 |
|
qlaxr3.2 |
|- B e. CH |
3 |
|
qlaxr3.3 |
|- C e. CH |
4 |
|
qlaxr3.4 |
|- ( C vH ( _|_ ` C ) ) = ( ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) vH ( _|_ ` ( A vH B ) ) ) |
5 |
1 2
|
chjcli |
|- ( A vH B ) e. CH |
6 |
5
|
chshii |
|- ( A vH B ) e. SH |
7 |
1 2
|
chub1i |
|- A C_ ( A vH B ) |
8 |
|
incom |
|- ( ( A vH B ) i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) = ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( A vH B ) ) |
9 |
1
|
choccli |
|- ( _|_ ` A ) e. CH |
10 |
2
|
choccli |
|- ( _|_ ` B ) e. CH |
11 |
1 2
|
cmj1i |
|- A C_H ( A vH B ) |
12 |
1 5 11
|
cmcmii |
|- ( A vH B ) C_H A |
13 |
5 1 12
|
cmcm2ii |
|- ( A vH B ) C_H ( _|_ ` A ) |
14 |
1 2
|
cmj2i |
|- B C_H ( A vH B ) |
15 |
2 5 14
|
cmcmii |
|- ( A vH B ) C_H B |
16 |
5 2 15
|
cmcm2ii |
|- ( A vH B ) C_H ( _|_ ` B ) |
17 |
5 9 10 13 16
|
fh1i |
|- ( ( A vH B ) i^i ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) = ( ( ( A vH B ) i^i ( _|_ ` A ) ) vH ( ( A vH B ) i^i ( _|_ ` B ) ) ) |
18 |
8 17
|
eqtr3i |
|- ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( A vH B ) ) = ( ( ( A vH B ) i^i ( _|_ ` A ) ) vH ( ( A vH B ) i^i ( _|_ ` B ) ) ) |
19 |
3
|
chjoi |
|- ( C vH ( _|_ ` C ) ) = ~H |
20 |
19 4
|
eqtr3i |
|- ~H = ( ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) vH ( _|_ ` ( A vH B ) ) ) |
21 |
|
choc0 |
|- ( _|_ ` 0H ) = ~H |
22 |
9 10
|
chjcli |
|- ( ( _|_ ` A ) vH ( _|_ ` B ) ) e. CH |
23 |
22 5
|
chdmm1i |
|- ( _|_ ` ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( A vH B ) ) ) = ( ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) vH ( _|_ ` ( A vH B ) ) ) |
24 |
20 21 23
|
3eqtr4i |
|- ( _|_ ` 0H ) = ( _|_ ` ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( A vH B ) ) ) |
25 |
22 5
|
chincli |
|- ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( A vH B ) ) e. CH |
26 |
|
h0elch |
|- 0H e. CH |
27 |
25 26
|
chcon3i |
|- ( ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( A vH B ) ) = 0H <-> ( _|_ ` 0H ) = ( _|_ ` ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( A vH B ) ) ) ) |
28 |
24 27
|
mpbir |
|- ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( A vH B ) ) = 0H |
29 |
18 28
|
eqtr3i |
|- ( ( ( A vH B ) i^i ( _|_ ` A ) ) vH ( ( A vH B ) i^i ( _|_ ` B ) ) ) = 0H |
30 |
5 9
|
chincli |
|- ( ( A vH B ) i^i ( _|_ ` A ) ) e. CH |
31 |
5 10
|
chincli |
|- ( ( A vH B ) i^i ( _|_ ` B ) ) e. CH |
32 |
30 31
|
chj00i |
|- ( ( ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H /\ ( ( A vH B ) i^i ( _|_ ` B ) ) = 0H ) <-> ( ( ( A vH B ) i^i ( _|_ ` A ) ) vH ( ( A vH B ) i^i ( _|_ ` B ) ) ) = 0H ) |
33 |
29 32
|
mpbir |
|- ( ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H /\ ( ( A vH B ) i^i ( _|_ ` B ) ) = 0H ) |
34 |
33
|
simpli |
|- ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H |
35 |
1 6 7 34
|
omlsii |
|- A = ( A vH B ) |
36 |
2 1
|
chub2i |
|- B C_ ( A vH B ) |
37 |
33
|
simpri |
|- ( ( A vH B ) i^i ( _|_ ` B ) ) = 0H |
38 |
2 6 36 37
|
omlsii |
|- B = ( A vH B ) |
39 |
35 38
|
eqtr4i |
|- A = B |