Step |
Hyp |
Ref |
Expression |
1 |
|
qlaxr3.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
qlaxr3.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
|
qlaxr3.3 |
⊢ 𝐶 ∈ Cℋ |
4 |
|
qlaxr3.4 |
⊢ ( 𝐶 ∨ℋ ( ⊥ ‘ 𝐶 ) ) = ( ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∨ℋ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
5 |
1 2
|
chjcli |
⊢ ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ |
6 |
5
|
chshii |
⊢ ( 𝐴 ∨ℋ 𝐵 ) ∈ Sℋ |
7 |
1 2
|
chub1i |
⊢ 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
8 |
|
incom |
⊢ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) = ( ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) |
9 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
10 |
2
|
choccli |
⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
11 |
1 2
|
cmj1i |
⊢ 𝐴 𝐶ℋ ( 𝐴 ∨ℋ 𝐵 ) |
12 |
1 5 11
|
cmcmii |
⊢ ( 𝐴 ∨ℋ 𝐵 ) 𝐶ℋ 𝐴 |
13 |
5 1 12
|
cmcm2ii |
⊢ ( 𝐴 ∨ℋ 𝐵 ) 𝐶ℋ ( ⊥ ‘ 𝐴 ) |
14 |
1 2
|
cmj2i |
⊢ 𝐵 𝐶ℋ ( 𝐴 ∨ℋ 𝐵 ) |
15 |
2 5 14
|
cmcmii |
⊢ ( 𝐴 ∨ℋ 𝐵 ) 𝐶ℋ 𝐵 |
16 |
5 2 15
|
cmcm2ii |
⊢ ( 𝐴 ∨ℋ 𝐵 ) 𝐶ℋ ( ⊥ ‘ 𝐵 ) |
17 |
5 9 10 13 16
|
fh1i |
⊢ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) = ( ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) ∨ℋ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) |
18 |
8 17
|
eqtr3i |
⊢ ( ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = ( ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) ∨ℋ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) |
19 |
3
|
chjoi |
⊢ ( 𝐶 ∨ℋ ( ⊥ ‘ 𝐶 ) ) = ℋ |
20 |
19 4
|
eqtr3i |
⊢ ℋ = ( ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∨ℋ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
21 |
|
choc0 |
⊢ ( ⊥ ‘ 0ℋ ) = ℋ |
22 |
9 10
|
chjcli |
⊢ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ |
23 |
22 5
|
chdmm1i |
⊢ ( ⊥ ‘ ( ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) = ( ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∨ℋ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
24 |
20 21 23
|
3eqtr4i |
⊢ ( ⊥ ‘ 0ℋ ) = ( ⊥ ‘ ( ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
25 |
22 5
|
chincli |
⊢ ( ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ∈ Cℋ |
26 |
|
h0elch |
⊢ 0ℋ ∈ Cℋ |
27 |
25 26
|
chcon3i |
⊢ ( ( ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = 0ℋ ↔ ( ⊥ ‘ 0ℋ ) = ( ⊥ ‘ ( ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) |
28 |
24 27
|
mpbir |
⊢ ( ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = 0ℋ |
29 |
18 28
|
eqtr3i |
⊢ ( ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) ∨ℋ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) = 0ℋ |
30 |
5 9
|
chincli |
⊢ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) ∈ Cℋ |
31 |
5 10
|
chincli |
⊢ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ |
32 |
30 31
|
chj00i |
⊢ ( ( ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ∧ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( ⊥ ‘ 𝐵 ) ) = 0ℋ ) ↔ ( ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) ∨ℋ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) = 0ℋ ) |
33 |
29 32
|
mpbir |
⊢ ( ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ ∧ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( ⊥ ‘ 𝐵 ) ) = 0ℋ ) |
34 |
33
|
simpli |
⊢ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ |
35 |
1 6 7 34
|
omlsii |
⊢ 𝐴 = ( 𝐴 ∨ℋ 𝐵 ) |
36 |
2 1
|
chub2i |
⊢ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
37 |
33
|
simpri |
⊢ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( ⊥ ‘ 𝐵 ) ) = 0ℋ |
38 |
2 6 36 37
|
omlsii |
⊢ 𝐵 = ( 𝐴 ∨ℋ 𝐵 ) |
39 |
35 38
|
eqtr4i |
⊢ 𝐴 = 𝐵 |