| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qlaxr3.1 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 2 |  | qlaxr3.2 | ⊢ 𝐵  ∈   Cℋ | 
						
							| 3 |  | qlaxr3.3 | ⊢ 𝐶  ∈   Cℋ | 
						
							| 4 |  | qlaxr3.4 | ⊢ ( 𝐶  ∨ℋ  ( ⊥ ‘ 𝐶 ) )  =  ( ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) )  ∨ℋ  ( ⊥ ‘ ( 𝐴  ∨ℋ  𝐵 ) ) ) | 
						
							| 5 | 1 2 | chjcli | ⊢ ( 𝐴  ∨ℋ  𝐵 )  ∈   Cℋ | 
						
							| 6 | 5 | chshii | ⊢ ( 𝐴  ∨ℋ  𝐵 )  ∈   Sℋ | 
						
							| 7 | 1 2 | chub1i | ⊢ 𝐴  ⊆  ( 𝐴  ∨ℋ  𝐵 ) | 
						
							| 8 |  | incom | ⊢ ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) )  =  ( ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( ⊥ ‘ 𝐵 ) )  ∩  ( 𝐴  ∨ℋ  𝐵 ) ) | 
						
							| 9 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐴 )  ∈   Cℋ | 
						
							| 10 | 2 | choccli | ⊢ ( ⊥ ‘ 𝐵 )  ∈   Cℋ | 
						
							| 11 | 1 2 | cmj1i | ⊢ 𝐴  𝐶ℋ  ( 𝐴  ∨ℋ  𝐵 ) | 
						
							| 12 | 1 5 11 | cmcmii | ⊢ ( 𝐴  ∨ℋ  𝐵 )  𝐶ℋ  𝐴 | 
						
							| 13 | 5 1 12 | cmcm2ii | ⊢ ( 𝐴  ∨ℋ  𝐵 )  𝐶ℋ  ( ⊥ ‘ 𝐴 ) | 
						
							| 14 | 1 2 | cmj2i | ⊢ 𝐵  𝐶ℋ  ( 𝐴  ∨ℋ  𝐵 ) | 
						
							| 15 | 2 5 14 | cmcmii | ⊢ ( 𝐴  ∨ℋ  𝐵 )  𝐶ℋ  𝐵 | 
						
							| 16 | 5 2 15 | cmcm2ii | ⊢ ( 𝐴  ∨ℋ  𝐵 )  𝐶ℋ  ( ⊥ ‘ 𝐵 ) | 
						
							| 17 | 5 9 10 13 16 | fh1i | ⊢ ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) )  =  ( ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∨ℋ  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐵 ) ) ) | 
						
							| 18 | 8 17 | eqtr3i | ⊢ ( ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( ⊥ ‘ 𝐵 ) )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  =  ( ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∨ℋ  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐵 ) ) ) | 
						
							| 19 | 3 | chjoi | ⊢ ( 𝐶  ∨ℋ  ( ⊥ ‘ 𝐶 ) )  =   ℋ | 
						
							| 20 | 19 4 | eqtr3i | ⊢  ℋ  =  ( ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) )  ∨ℋ  ( ⊥ ‘ ( 𝐴  ∨ℋ  𝐵 ) ) ) | 
						
							| 21 |  | choc0 | ⊢ ( ⊥ ‘ 0ℋ )  =   ℋ | 
						
							| 22 | 9 10 | chjcli | ⊢ ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( ⊥ ‘ 𝐵 ) )  ∈   Cℋ | 
						
							| 23 | 22 5 | chdmm1i | ⊢ ( ⊥ ‘ ( ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( ⊥ ‘ 𝐵 ) )  ∩  ( 𝐴  ∨ℋ  𝐵 ) ) )  =  ( ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) )  ∨ℋ  ( ⊥ ‘ ( 𝐴  ∨ℋ  𝐵 ) ) ) | 
						
							| 24 | 20 21 23 | 3eqtr4i | ⊢ ( ⊥ ‘ 0ℋ )  =  ( ⊥ ‘ ( ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( ⊥ ‘ 𝐵 ) )  ∩  ( 𝐴  ∨ℋ  𝐵 ) ) ) | 
						
							| 25 | 22 5 | chincli | ⊢ ( ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( ⊥ ‘ 𝐵 ) )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  ∈   Cℋ | 
						
							| 26 |  | h0elch | ⊢ 0ℋ  ∈   Cℋ | 
						
							| 27 | 25 26 | chcon3i | ⊢ ( ( ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( ⊥ ‘ 𝐵 ) )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  =  0ℋ  ↔  ( ⊥ ‘ 0ℋ )  =  ( ⊥ ‘ ( ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( ⊥ ‘ 𝐵 ) )  ∩  ( 𝐴  ∨ℋ  𝐵 ) ) ) ) | 
						
							| 28 | 24 27 | mpbir | ⊢ ( ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( ⊥ ‘ 𝐵 ) )  ∩  ( 𝐴  ∨ℋ  𝐵 ) )  =  0ℋ | 
						
							| 29 | 18 28 | eqtr3i | ⊢ ( ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∨ℋ  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐵 ) ) )  =  0ℋ | 
						
							| 30 | 5 9 | chincli | ⊢ ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∈   Cℋ | 
						
							| 31 | 5 10 | chincli | ⊢ ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐵 ) )  ∈   Cℋ | 
						
							| 32 | 30 31 | chj00i | ⊢ ( ( ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  =  0ℋ  ∧  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐵 ) )  =  0ℋ )  ↔  ( ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  ∨ℋ  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐵 ) ) )  =  0ℋ ) | 
						
							| 33 | 29 32 | mpbir | ⊢ ( ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  =  0ℋ  ∧  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐵 ) )  =  0ℋ ) | 
						
							| 34 | 33 | simpli | ⊢ ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐴 ) )  =  0ℋ | 
						
							| 35 | 1 6 7 34 | omlsii | ⊢ 𝐴  =  ( 𝐴  ∨ℋ  𝐵 ) | 
						
							| 36 | 2 1 | chub2i | ⊢ 𝐵  ⊆  ( 𝐴  ∨ℋ  𝐵 ) | 
						
							| 37 | 33 | simpri | ⊢ ( ( 𝐴  ∨ℋ  𝐵 )  ∩  ( ⊥ ‘ 𝐵 ) )  =  0ℋ | 
						
							| 38 | 2 6 36 37 | omlsii | ⊢ 𝐵  =  ( 𝐴  ∨ℋ  𝐵 ) | 
						
							| 39 | 35 38 | eqtr4i | ⊢ 𝐴  =  𝐵 |