Metamath Proof Explorer


Theorem qlaxr3i

Description: A variation of the orthomodular law, showing CH is an orthomodular lattice. (This corresponds to axiom "ax-r3" in the Quantum Logic Explorer.) (Contributed by NM, 7-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses qlaxr3.1 𝐴C
qlaxr3.2 𝐵C
qlaxr3.3 𝐶C
qlaxr3.4 ( 𝐶 ( ⊥ ‘ 𝐶 ) ) = ( ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ 𝐵 ) ) ) ∨ ( ⊥ ‘ ( 𝐴 𝐵 ) ) )
Assertion qlaxr3i 𝐴 = 𝐵

Proof

Step Hyp Ref Expression
1 qlaxr3.1 𝐴C
2 qlaxr3.2 𝐵C
3 qlaxr3.3 𝐶C
4 qlaxr3.4 ( 𝐶 ( ⊥ ‘ 𝐶 ) ) = ( ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ 𝐵 ) ) ) ∨ ( ⊥ ‘ ( 𝐴 𝐵 ) ) )
5 1 2 chjcli ( 𝐴 𝐵 ) ∈ C
6 5 chshii ( 𝐴 𝐵 ) ∈ S
7 1 2 chub1i 𝐴 ⊆ ( 𝐴 𝐵 )
8 incom ( ( 𝐴 𝐵 ) ∩ ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ 𝐵 ) ) ) = ( ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ 𝐵 ) ) ∩ ( 𝐴 𝐵 ) )
9 1 choccli ( ⊥ ‘ 𝐴 ) ∈ C
10 2 choccli ( ⊥ ‘ 𝐵 ) ∈ C
11 1 2 cmj1i 𝐴 𝐶 ( 𝐴 𝐵 )
12 1 5 11 cmcmii ( 𝐴 𝐵 ) 𝐶 𝐴
13 5 1 12 cmcm2ii ( 𝐴 𝐵 ) 𝐶 ( ⊥ ‘ 𝐴 )
14 1 2 cmj2i 𝐵 𝐶 ( 𝐴 𝐵 )
15 2 5 14 cmcmii ( 𝐴 𝐵 ) 𝐶 𝐵
16 5 2 15 cmcm2ii ( 𝐴 𝐵 ) 𝐶 ( ⊥ ‘ 𝐵 )
17 5 9 10 13 16 fh1i ( ( 𝐴 𝐵 ) ∩ ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ 𝐵 ) ) ) = ( ( ( 𝐴 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) ∨ ( ( 𝐴 𝐵 ) ∩ ( ⊥ ‘ 𝐵 ) ) )
18 8 17 eqtr3i ( ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ 𝐵 ) ) ∩ ( 𝐴 𝐵 ) ) = ( ( ( 𝐴 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) ∨ ( ( 𝐴 𝐵 ) ∩ ( ⊥ ‘ 𝐵 ) ) )
19 3 chjoi ( 𝐶 ( ⊥ ‘ 𝐶 ) ) = ℋ
20 19 4 eqtr3i ℋ = ( ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ 𝐵 ) ) ) ∨ ( ⊥ ‘ ( 𝐴 𝐵 ) ) )
21 choc0 ( ⊥ ‘ 0 ) = ℋ
22 9 10 chjcli ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ 𝐵 ) ) ∈ C
23 22 5 chdmm1i ( ⊥ ‘ ( ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ 𝐵 ) ) ∩ ( 𝐴 𝐵 ) ) ) = ( ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ 𝐵 ) ) ) ∨ ( ⊥ ‘ ( 𝐴 𝐵 ) ) )
24 20 21 23 3eqtr4i ( ⊥ ‘ 0 ) = ( ⊥ ‘ ( ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ 𝐵 ) ) ∩ ( 𝐴 𝐵 ) ) )
25 22 5 chincli ( ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ 𝐵 ) ) ∩ ( 𝐴 𝐵 ) ) ∈ C
26 h0elch 0C
27 25 26 chcon3i ( ( ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ 𝐵 ) ) ∩ ( 𝐴 𝐵 ) ) = 0 ↔ ( ⊥ ‘ 0 ) = ( ⊥ ‘ ( ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ 𝐵 ) ) ∩ ( 𝐴 𝐵 ) ) ) )
28 24 27 mpbir ( ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ 𝐵 ) ) ∩ ( 𝐴 𝐵 ) ) = 0
29 18 28 eqtr3i ( ( ( 𝐴 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) ∨ ( ( 𝐴 𝐵 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) = 0
30 5 9 chincli ( ( 𝐴 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) ∈ C
31 5 10 chincli ( ( 𝐴 𝐵 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∈ C
32 30 31 chj00i ( ( ( ( 𝐴 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ∧ ( ( 𝐴 𝐵 ) ∩ ( ⊥ ‘ 𝐵 ) ) = 0 ) ↔ ( ( ( 𝐴 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) ∨ ( ( 𝐴 𝐵 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) = 0 )
33 29 32 mpbir ( ( ( 𝐴 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ∧ ( ( 𝐴 𝐵 ) ∩ ( ⊥ ‘ 𝐵 ) ) = 0 )
34 33 simpli ( ( 𝐴 𝐵 ) ∩ ( ⊥ ‘ 𝐴 ) ) = 0
35 1 6 7 34 omlsii 𝐴 = ( 𝐴 𝐵 )
36 2 1 chub2i 𝐵 ⊆ ( 𝐴 𝐵 )
37 33 simpri ( ( 𝐴 𝐵 ) ∩ ( ⊥ ‘ 𝐵 ) ) = 0
38 2 6 36 37 omlsii 𝐵 = ( 𝐴 𝐵 )
39 35 38 eqtr4i 𝐴 = 𝐵