Metamath Proof Explorer


Theorem qlaxr3i

Description: A variation of the orthomodular law, showing CH is an orthomodular lattice. (This corresponds to axiom "ax-r3" in the Quantum Logic Explorer.) (Contributed by NM, 7-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses qlaxr3.1 AC
qlaxr3.2 BC
qlaxr3.3 CC
qlaxr3.4 CC=ABAB
Assertion qlaxr3i A=B

Proof

Step Hyp Ref Expression
1 qlaxr3.1 AC
2 qlaxr3.2 BC
3 qlaxr3.3 CC
4 qlaxr3.4 CC=ABAB
5 1 2 chjcli ABC
6 5 chshii ABS
7 1 2 chub1i AAB
8 incom ABAB=ABAB
9 1 choccli AC
10 2 choccli BC
11 1 2 cmj1i A𝐶AB
12 1 5 11 cmcmii AB𝐶A
13 5 1 12 cmcm2ii AB𝐶A
14 1 2 cmj2i B𝐶AB
15 2 5 14 cmcmii AB𝐶B
16 5 2 15 cmcm2ii AB𝐶B
17 5 9 10 13 16 fh1i ABAB=ABAABB
18 8 17 eqtr3i ABAB=ABAABB
19 3 chjoi CC=
20 19 4 eqtr3i =ABAB
21 choc0 0=
22 9 10 chjcli ABC
23 22 5 chdmm1i ABAB=ABAB
24 20 21 23 3eqtr4i 0=ABAB
25 22 5 chincli ABABC
26 h0elch 0C
27 25 26 chcon3i ABAB=00=ABAB
28 24 27 mpbir ABAB=0
29 18 28 eqtr3i ABAABB=0
30 5 9 chincli ABAC
31 5 10 chincli ABBC
32 30 31 chj00i ABA=0ABB=0ABAABB=0
33 29 32 mpbir ABA=0ABB=0
34 33 simpli ABA=0
35 1 6 7 34 omlsii A=AB
36 2 1 chub2i BAB
37 33 simpri ABB=0
38 2 6 36 37 omlsii B=AB
39 35 38 eqtr4i A=B