Description: A variation of the orthomodular law, showing CH is an orthomodular lattice. (This corresponds to axiom "ax-r3" in the Quantum Logic Explorer.) (Contributed by NM, 7-Aug-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | qlaxr3.1 | |
|
qlaxr3.2 | |
||
qlaxr3.3 | |
||
qlaxr3.4 | |
||
Assertion | qlaxr3i | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlaxr3.1 | |
|
2 | qlaxr3.2 | |
|
3 | qlaxr3.3 | |
|
4 | qlaxr3.4 | |
|
5 | 1 2 | chjcli | |
6 | 5 | chshii | |
7 | 1 2 | chub1i | |
8 | incom | |
|
9 | 1 | choccli | |
10 | 2 | choccli | |
11 | 1 2 | cmj1i | |
12 | 1 5 11 | cmcmii | |
13 | 5 1 12 | cmcm2ii | |
14 | 1 2 | cmj2i | |
15 | 2 5 14 | cmcmii | |
16 | 5 2 15 | cmcm2ii | |
17 | 5 9 10 13 16 | fh1i | |
18 | 8 17 | eqtr3i | |
19 | 3 | chjoi | |
20 | 19 4 | eqtr3i | |
21 | choc0 | |
|
22 | 9 10 | chjcli | |
23 | 22 5 | chdmm1i | |
24 | 20 21 23 | 3eqtr4i | |
25 | 22 5 | chincli | |
26 | h0elch | |
|
27 | 25 26 | chcon3i | |
28 | 24 27 | mpbir | |
29 | 18 28 | eqtr3i | |
30 | 5 9 | chincli | |
31 | 5 10 | chincli | |
32 | 30 31 | chj00i | |
33 | 29 32 | mpbir | |
34 | 33 | simpli | |
35 | 1 6 7 34 | omlsii | |
36 | 2 1 | chub2i | |
37 | 33 | simpri | |
38 | 2 6 36 37 | omlsii | |
39 | 35 38 | eqtr4i | |