| Step |
Hyp |
Ref |
Expression |
| 1 |
|
plydiv.pl |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) |
| 2 |
|
plydiv.tm |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) |
| 3 |
|
plydiv.rc |
|- ( ( ph /\ ( x e. S /\ x =/= 0 ) ) -> ( 1 / x ) e. S ) |
| 4 |
|
plydiv.m1 |
|- ( ph -> -u 1 e. S ) |
| 5 |
|
plydiv.f |
|- ( ph -> F e. ( Poly ` S ) ) |
| 6 |
|
plydiv.g |
|- ( ph -> G e. ( Poly ` S ) ) |
| 7 |
|
plydiv.z |
|- ( ph -> G =/= 0p ) |
| 8 |
|
eqid |
|- ( F oF - ( G oF x. ( F quot G ) ) ) = ( F oF - ( G oF x. ( F quot G ) ) ) |
| 9 |
1 2 3 4 5 6 7 8
|
quotlem |
|- ( ph -> ( ( F quot G ) e. ( Poly ` S ) /\ ( ( F oF - ( G oF x. ( F quot G ) ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. ( F quot G ) ) ) ) < ( deg ` G ) ) ) ) |
| 10 |
9
|
simpld |
|- ( ph -> ( F quot G ) e. ( Poly ` S ) ) |