Metamath Proof Explorer


Theorem quotcl

Description: The quotient of two polynomials in a field S is also in the field. (Contributed by Mario Carneiro, 26-Jul-2014)

Ref Expression
Hypotheses plydiv.pl φxSySx+yS
plydiv.tm φxSySxyS
plydiv.rc φxSx01xS
plydiv.m1 φ1S
plydiv.f φFPolyS
plydiv.g φGPolyS
plydiv.z φG0𝑝
Assertion quotcl φFquotGPolyS

Proof

Step Hyp Ref Expression
1 plydiv.pl φxSySx+yS
2 plydiv.tm φxSySxyS
3 plydiv.rc φxSx01xS
4 plydiv.m1 φ1S
5 plydiv.f φFPolyS
6 plydiv.g φGPolyS
7 plydiv.z φG0𝑝
8 eqid FfG×fFquotG=FfG×fFquotG
9 1 2 3 4 5 6 7 8 quotlem φFquotGPolySFfG×fFquotG=0𝑝degFfG×fFquotG<degG
10 9 simpld φFquotGPolyS