Metamath Proof Explorer


Definition df-quot

Description: Define the quotient function on polynomials. This is the q of the expression f = g x. q + r in the division algorithm. (Contributed by Mario Carneiro, 23-Jul-2014)

Ref Expression
Assertion df-quot quot=fPoly,gPoly0𝑝ιqPoly|[˙ffg×fq/r]˙r=0𝑝degr<degg

Detailed syntax breakdown

Step Hyp Ref Expression
0 cquot classquot
1 vf setvarf
2 cply classPoly
3 cc class
4 3 2 cfv classPoly
5 vg setvarg
6 c0p class0𝑝
7 6 csn class0𝑝
8 4 7 cdif classPoly0𝑝
9 vq setvarq
10 1 cv setvarf
11 cmin class
12 11 cof classf
13 5 cv setvarg
14 cmul class×
15 14 cof classf×
16 9 cv setvarq
17 13 16 15 co classg×fq
18 10 17 12 co classffg×fq
19 vr setvarr
20 19 cv setvarr
21 20 6 wceq wffr=0𝑝
22 cdgr classdeg
23 20 22 cfv classdegr
24 clt class<
25 13 22 cfv classdegg
26 23 25 24 wbr wffdegr<degg
27 21 26 wo wffr=0𝑝degr<degg
28 27 19 18 wsbc wff[˙ffg×fq/r]˙r=0𝑝degr<degg
29 28 9 4 crio classιqPoly|[˙ffg×fq/r]˙r=0𝑝degr<degg
30 1 5 4 8 29 cmpo classfPoly,gPoly0𝑝ιqPoly|[˙ffg×fq/r]˙r=0𝑝degr<degg
31 0 30 wceq wffquot=fPoly,gPoly0𝑝ιqPoly|[˙ffg×fq/r]˙r=0𝑝degr<degg