Metamath Proof Explorer


Theorem quotlem

Description: Lemma for properties of the polynomial quotient function. (Contributed by Mario Carneiro, 26-Jul-2014)

Ref Expression
Hypotheses plydiv.pl φ x S y S x + y S
plydiv.tm φ x S y S x y S
plydiv.rc φ x S x 0 1 x S
plydiv.m1 φ 1 S
plydiv.f φ F Poly S
plydiv.g φ G Poly S
plydiv.z φ G 0 𝑝
quotlem.8 R = F f G × f F quot G
Assertion quotlem φ F quot G Poly S R = 0 𝑝 deg R < deg G

Proof

Step Hyp Ref Expression
1 plydiv.pl φ x S y S x + y S
2 plydiv.tm φ x S y S x y S
3 plydiv.rc φ x S x 0 1 x S
4 plydiv.m1 φ 1 S
5 plydiv.f φ F Poly S
6 plydiv.g φ G Poly S
7 plydiv.z φ G 0 𝑝
8 quotlem.8 R = F f G × f F quot G
9 eqid F f G × f q = F f G × f q
10 9 quotval F Poly S G Poly S G 0 𝑝 F quot G = ι q Poly | F f G × f q = 0 𝑝 deg F f G × f q < deg G
11 5 6 7 10 syl3anc φ F quot G = ι q Poly | F f G × f q = 0 𝑝 deg F f G × f q < deg G
12 1 2 3 4 5 6 7 9 plydivalg φ ∃! q Poly S F f G × f q = 0 𝑝 deg F f G × f q < deg G
13 reurex ∃! q Poly S F f G × f q = 0 𝑝 deg F f G × f q < deg G q Poly S F f G × f q = 0 𝑝 deg F f G × f q < deg G
14 12 13 syl φ q Poly S F f G × f q = 0 𝑝 deg F f G × f q < deg G
15 addcl x y x + y
16 15 adantl φ x y x + y
17 mulcl x y x y
18 17 adantl φ x y x y
19 reccl x x 0 1 x
20 19 adantl φ x x 0 1 x
21 neg1cn 1
22 21 a1i φ 1
23 plyssc Poly S Poly
24 23 5 sseldi φ F Poly
25 23 6 sseldi φ G Poly
26 16 18 20 22 24 25 7 9 plydivalg φ ∃! q Poly F f G × f q = 0 𝑝 deg F f G × f q < deg G
27 id F f G × f q = 0 𝑝 deg F f G × f q < deg G F f G × f q = 0 𝑝 deg F f G × f q < deg G
28 27 rgenw q Poly S F f G × f q = 0 𝑝 deg F f G × f q < deg G F f G × f q = 0 𝑝 deg F f G × f q < deg G
29 riotass2 Poly S Poly q Poly S F f G × f q = 0 𝑝 deg F f G × f q < deg G F f G × f q = 0 𝑝 deg F f G × f q < deg G q Poly S F f G × f q = 0 𝑝 deg F f G × f q < deg G ∃! q Poly F f G × f q = 0 𝑝 deg F f G × f q < deg G ι q Poly S | F f G × f q = 0 𝑝 deg F f G × f q < deg G = ι q Poly | F f G × f q = 0 𝑝 deg F f G × f q < deg G
30 23 28 29 mpanl12 q Poly S F f G × f q = 0 𝑝 deg F f G × f q < deg G ∃! q Poly F f G × f q = 0 𝑝 deg F f G × f q < deg G ι q Poly S | F f G × f q = 0 𝑝 deg F f G × f q < deg G = ι q Poly | F f G × f q = 0 𝑝 deg F f G × f q < deg G
31 14 26 30 syl2anc φ ι q Poly S | F f G × f q = 0 𝑝 deg F f G × f q < deg G = ι q Poly | F f G × f q = 0 𝑝 deg F f G × f q < deg G
32 11 31 eqtr4d φ F quot G = ι q Poly S | F f G × f q = 0 𝑝 deg F f G × f q < deg G
33 riotacl2 ∃! q Poly S F f G × f q = 0 𝑝 deg F f G × f q < deg G ι q Poly S | F f G × f q = 0 𝑝 deg F f G × f q < deg G q Poly S | F f G × f q = 0 𝑝 deg F f G × f q < deg G
34 12 33 syl φ ι q Poly S | F f G × f q = 0 𝑝 deg F f G × f q < deg G q Poly S | F f G × f q = 0 𝑝 deg F f G × f q < deg G
35 32 34 eqeltrd φ F quot G q Poly S | F f G × f q = 0 𝑝 deg F f G × f q < deg G
36 oveq2 q = F quot G G × f q = G × f F quot G
37 36 oveq2d q = F quot G F f G × f q = F f G × f F quot G
38 37 8 eqtr4di q = F quot G F f G × f q = R
39 38 eqeq1d q = F quot G F f G × f q = 0 𝑝 R = 0 𝑝
40 38 fveq2d q = F quot G deg F f G × f q = deg R
41 40 breq1d q = F quot G deg F f G × f q < deg G deg R < deg G
42 39 41 orbi12d q = F quot G F f G × f q = 0 𝑝 deg F f G × f q < deg G R = 0 𝑝 deg R < deg G
43 42 elrab F quot G q Poly S | F f G × f q = 0 𝑝 deg F f G × f q < deg G F quot G Poly S R = 0 𝑝 deg R < deg G
44 35 43 sylib φ F quot G Poly S R = 0 𝑝 deg R < deg G