Metamath Proof Explorer


Theorem quotcl2

Description: Closure of the quotient function. (Contributed by Mario Carneiro, 26-Jul-2014)

Ref Expression
Assertion quotcl2 FPolySGPolySG0𝑝FquotGPoly

Proof

Step Hyp Ref Expression
1 addcl xyx+y
2 1 adantl FPolySGPolySG0𝑝xyx+y
3 mulcl xyxy
4 3 adantl FPolySGPolySG0𝑝xyxy
5 reccl xx01x
6 5 adantl FPolySGPolySG0𝑝xx01x
7 neg1cn 1
8 7 a1i FPolySGPolySG0𝑝1
9 plyssc PolySPoly
10 simp1 FPolySGPolySG0𝑝FPolyS
11 9 10 sselid FPolySGPolySG0𝑝FPoly
12 simp2 FPolySGPolySG0𝑝GPolyS
13 9 12 sselid FPolySGPolySG0𝑝GPoly
14 simp3 FPolySGPolySG0𝑝G0𝑝
15 2 4 6 8 11 13 14 quotcl FPolySGPolySG0𝑝FquotGPoly