Metamath Proof Explorer


Theorem r19.27z

Description: Restricted quantifier version of Theorem 19.27 of Margaris p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 26-Oct-2010)

Ref Expression
Hypothesis r19.27z.1
|- F/ x ps
Assertion r19.27z
|- ( A =/= (/) -> ( A. x e. A ( ph /\ ps ) <-> ( A. x e. A ph /\ ps ) ) )

Proof

Step Hyp Ref Expression
1 r19.27z.1
 |-  F/ x ps
2 r19.26
 |-  ( A. x e. A ( ph /\ ps ) <-> ( A. x e. A ph /\ A. x e. A ps ) )
3 1 r19.3rz
 |-  ( A =/= (/) -> ( ps <-> A. x e. A ps ) )
4 3 anbi2d
 |-  ( A =/= (/) -> ( ( A. x e. A ph /\ ps ) <-> ( A. x e. A ph /\ A. x e. A ps ) ) )
5 2 4 bitr4id
 |-  ( A =/= (/) -> ( A. x e. A ( ph /\ ps ) <-> ( A. x e. A ph /\ ps ) ) )