Metamath Proof Explorer


Theorem r1sssuc

Description: The value of the cumulative hierarchy of sets function is a subset of its value at the successor. JFM CLASSES1 Th. 39. (Contributed by FL, 20-Apr-2011)

Ref Expression
Assertion r1sssuc
|- ( A e. On -> ( R1 ` A ) C_ ( R1 ` suc A ) )

Proof

Step Hyp Ref Expression
1 r1tr
 |-  Tr ( R1 ` A )
2 dftr4
 |-  ( Tr ( R1 ` A ) <-> ( R1 ` A ) C_ ~P ( R1 ` A ) )
3 1 2 mpbi
 |-  ( R1 ` A ) C_ ~P ( R1 ` A )
4 r1suc
 |-  ( A e. On -> ( R1 ` suc A ) = ~P ( R1 ` A ) )
5 3 4 sseqtrrid
 |-  ( A e. On -> ( R1 ` A ) C_ ( R1 ` suc A ) )