Metamath Proof Explorer


Theorem rabbi

Description: Equivalent wff's correspond to equal restricted class abstractions. Closed theorem form of rabbidva . (Contributed by NM, 25-Nov-2013)

Ref Expression
Assertion rabbi
|- ( A. x e. A ( ps <-> ch ) <-> { x e. A | ps } = { x e. A | ch } )

Proof

Step Hyp Ref Expression
1 abbi
 |-  ( A. x ( ( x e. A /\ ps ) <-> ( x e. A /\ ch ) ) <-> { x | ( x e. A /\ ps ) } = { x | ( x e. A /\ ch ) } )
2 df-ral
 |-  ( A. x e. A ( ps <-> ch ) <-> A. x ( x e. A -> ( ps <-> ch ) ) )
3 pm5.32
 |-  ( ( x e. A -> ( ps <-> ch ) ) <-> ( ( x e. A /\ ps ) <-> ( x e. A /\ ch ) ) )
4 3 albii
 |-  ( A. x ( x e. A -> ( ps <-> ch ) ) <-> A. x ( ( x e. A /\ ps ) <-> ( x e. A /\ ch ) ) )
5 2 4 bitri
 |-  ( A. x e. A ( ps <-> ch ) <-> A. x ( ( x e. A /\ ps ) <-> ( x e. A /\ ch ) ) )
6 df-rab
 |-  { x e. A | ps } = { x | ( x e. A /\ ps ) }
7 df-rab
 |-  { x e. A | ch } = { x | ( x e. A /\ ch ) }
8 6 7 eqeq12i
 |-  ( { x e. A | ps } = { x e. A | ch } <-> { x | ( x e. A /\ ps ) } = { x | ( x e. A /\ ch ) } )
9 1 5 8 3bitr4i
 |-  ( A. x e. A ( ps <-> ch ) <-> { x e. A | ps } = { x e. A | ch } )