Metamath Proof Explorer


Theorem ralralimp

Description: Selecting one of two alternatives within a restricted generalization if one of the alternatives is false. (Contributed by AV, 6-Sep-2018) (Proof shortened by AV, 13-Oct-2018)

Ref Expression
Assertion ralralimp
|- ( ( ph /\ A =/= (/) ) -> ( A. x e. A ( ( ph -> ( th \/ ta ) ) /\ -. th ) -> ta ) )

Proof

Step Hyp Ref Expression
1 ornld
 |-  ( ph -> ( ( ( ph -> ( th \/ ta ) ) /\ -. th ) -> ta ) )
2 1 adantr
 |-  ( ( ph /\ A =/= (/) ) -> ( ( ( ph -> ( th \/ ta ) ) /\ -. th ) -> ta ) )
3 2 ralimdv
 |-  ( ( ph /\ A =/= (/) ) -> ( A. x e. A ( ( ph -> ( th \/ ta ) ) /\ -. th ) -> A. x e. A ta ) )
4 rspn0
 |-  ( A =/= (/) -> ( A. x e. A ta -> ta ) )
5 4 adantl
 |-  ( ( ph /\ A =/= (/) ) -> ( A. x e. A ta -> ta ) )
6 3 5 syld
 |-  ( ( ph /\ A =/= (/) ) -> ( A. x e. A ( ( ph -> ( th \/ ta ) ) /\ -. th ) -> ta ) )