| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|- ( ( B e. U. ( R1 " On ) /\ A C_ B ) -> A C_ B ) |
| 2 |
|
r1rankidb |
|- ( B e. U. ( R1 " On ) -> B C_ ( R1 ` ( rank ` B ) ) ) |
| 3 |
2
|
adantr |
|- ( ( B e. U. ( R1 " On ) /\ A C_ B ) -> B C_ ( R1 ` ( rank ` B ) ) ) |
| 4 |
1 3
|
sstrd |
|- ( ( B e. U. ( R1 " On ) /\ A C_ B ) -> A C_ ( R1 ` ( rank ` B ) ) ) |
| 5 |
|
sswf |
|- ( ( B e. U. ( R1 " On ) /\ A C_ B ) -> A e. U. ( R1 " On ) ) |
| 6 |
|
rankdmr1 |
|- ( rank ` B ) e. dom R1 |
| 7 |
|
rankr1bg |
|- ( ( A e. U. ( R1 " On ) /\ ( rank ` B ) e. dom R1 ) -> ( A C_ ( R1 ` ( rank ` B ) ) <-> ( rank ` A ) C_ ( rank ` B ) ) ) |
| 8 |
5 6 7
|
sylancl |
|- ( ( B e. U. ( R1 " On ) /\ A C_ B ) -> ( A C_ ( R1 ` ( rank ` B ) ) <-> ( rank ` A ) C_ ( rank ` B ) ) ) |
| 9 |
4 8
|
mpbid |
|- ( ( B e. U. ( R1 " On ) /\ A C_ B ) -> ( rank ` A ) C_ ( rank ` B ) ) |
| 10 |
9
|
ex |
|- ( B e. U. ( R1 " On ) -> ( A C_ B -> ( rank ` A ) C_ ( rank ` B ) ) ) |