Metamath Proof Explorer


Theorem rb-ax2

Description: The second of four axioms in the Russell-Bernays axiom system. (Contributed by Anthony Hart, 13-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion rb-ax2
|- ( -. ( ph \/ ps ) \/ ( ps \/ ph ) )

Proof

Step Hyp Ref Expression
1 pm1.4
 |-  ( ( ph \/ ps ) -> ( ps \/ ph ) )
2 1 con3i
 |-  ( -. ( ps \/ ph ) -> -. ( ph \/ ps ) )
3 2 con1i
 |-  ( -. -. ( ph \/ ps ) -> ( ps \/ ph ) )
4 3 orri
 |-  ( -. ( ph \/ ps ) \/ ( ps \/ ph ) )